

Technical Reference Manual

June 2012 (DRAFT)

State of Pennsylvania

Act 129
Energy Efficiency and Conservation Program &
Act 213
Alternative Energy Portfolio Standards

Table of Contents

1	INTE	RODUCTION	<u>1</u> 1
	1.1	Purpose	<u> 1</u> 4
	1.2	Definitions	<u>1</u> 4
	1.3	General Framework	<u>3</u> 3
	1.4	Algorithms	<u>3</u> 3
	1.5	Data and Input Values	44
	1.6	Baseline Estimates	
	1.7	Resource Savings in Current and Future Program Years	<u>55</u>
	1.8	Prospective Application of the TRM	
	1.9	Electric Resource Savings	<u>65</u>
	1.10	Post-Implementation Review	<u>66</u>
	1.11	Adjustments to Energy and Resource Savings	<u>7</u> 6
	1.12	Calculation of the Value of Resource Savings	<u>8</u> 7
	1.13	Transmission and Distribution System Losses	<u>8</u> 8
	1.14	Measure Lives	<u>8</u> 8
	1.15	Custom Measures	<u>9</u> 8
	1.16	Impact of Weather	<u>99</u>
	1.17	Measure Applicability Based on Sector	
	<u>1.18</u>	Algorithms for Energy Efficient Measures	10 10
2	RESI	DENTIAL MEASURES	<u>11</u> 44
	2.1	Electric HVAC	
	2.2	Electric Clothes Dryer with Moisture Sensor	19 19
	2.3	Efficient Electric Water Heaters	21 21
	2.4	Electroluminescent Nightlight	25 25
	2.5	Furnace Whistle	27 27
	2.6	Heat Pump Water Heaters	<u>3131</u>
	2.7	Home Audit Conservation Kits	<u>3636</u>
	2.8	LED Nightlight	<u>3939</u>
	2.9	Low Flow Faucet Aerators	41 <u>41</u>
	2.10	Low Flow Showerheads	45 45
	2.11	Programmable Thermostat	<u>4949</u>
	2.12	Room AC (RAC) Retirement	52 52
	2.13	Smart Strip Plug Outlets	<u>5858</u>
	2.14		<u>6060</u>
	2.15	Electric Water Heater Pipe Insulation	<u>6464</u>
	<u>2.16</u>	Residential Whole House Fans	<u>6767</u>
	2.17	Ductless Mini-Split Heat Pumps	<u>6969</u>
	2.18	Fuel Switching: Domestic Hot Water Electric to Gas	<u>7575</u>
	2.19	Fuel Switching: Heat Pump Water Heater to Gas Water Heater	
	2.20	Fuel Switching: Electric Heat to Gas Heat	
	2.21	Ceiling / Attic and Wall Insulation	
	2.22	Refrigerator / Freezer Recycling with and without Replacement	
	2.23	Residential New Construction	
	2.24	ENERGY STAR Refrigerators	<u>113106</u>
	2.25	ENERGY STAR Freezers	118 111

	2.26	ENERGY STAR Clothes Washers	. <u>122115</u>
	2.27	ENERGY STAR Dishwashers	. <u>127120</u>
	2.28	ENERGY STAR Dehumidifiers	. 130 123
	2.29	ENERGY STAR Room Air Conditioners	. 133 126
	2.30	ENERGY STAR Lighting	. <u>143130</u>
	2.31	ENERGY STAR Windows	. <u>149136</u>
	2.32	ENERGY STAR Audit	. <u>151138</u>
	2.33	Home Performance with ENERGY STAR	. <u>152139</u>
	2.34	ENERGY STAR Televisions	. <u>156143</u>
	2.35	ENERGY STAR Office Equipment	<u>. 160147</u>
	2.36	ENERGY STAR LEDs	. <u>164151</u>
	2.37	Residential Occupancy Sensors	. <u>169155</u>
	2.38	Holiday Lights	. <u>170156</u>
	2.39	Low Income Lighting (FirstEnergy)	. <u>173159</u>
	2.40	Water Heater Tank Wrap	. <u>176162</u>
	2.41	Pool Pump Load Shifting	<u>. 179165</u>
	2.42	High Efficiency Two-Speed Pool Pump	<u>. 182168</u>
	2.43	Variable Speed Pool Pumps (with Load Shifting Option)	<u>. 184170</u>
3	COM	MERCIAL AND INDUSTRIAL MEASURES	<u>189175</u>
	3.1	Baselines and Code Changes	<u>. 189175</u>
	3.2	Lighting Equipment Improvements	
	3.3	Premium Efficiency Motors	. <u>212195</u>
	3.4	Variable Frequency Drive (VFD) Improvements	
	3.5	Variable Frequency Drive (VFD) Improvement for Industrial Air Compressors	. <u>226205</u>
	3.6	HVAC Systems	. <u>228207</u>
	3.7	Electric Chillers	
	3.8	Anti-Sweat Heater Controls	
	3.9	High-Efficiency Refrigeration/Freezer Cases	
	3.10	High-Efficiency Evaporator Fan Motors for Reach-In Refrigerated Cases	
	3.11	High-Efficiency Evaporator Fan Motors for Walk-in Refrigerated Cases	
	3.12	ENERGY STAR Office Equipment	
	3.13	Smart Strip Plug Outlets	
	3.14	Beverage Machine Controls	
	<u>3.15</u>	High-Efficiency Ice Machines	
	3.16	Wall and Ceiling Insulation	
	3.17	Strip Curtains for Walk-In Freezers and Coolers	
	3.18	Water Source and Geothermal Heat Pumps.	
	3.19	Ductless Mini-Split Heat Pumps – Commercial < 5.4 tons	
	3.20	ENERGY STAR Electric Steam Cooker	
	3.21	Refrigeration – Night Covers for Display Cases.	
	3.22	Office Equipment – Network Power Management Enabling	307286
	3.23 3.24	Refrigeration – Auto Closers	
	3.24	Refrigeration – Door Gaskets for Walk-In Coolers and Freezers	
		Refrigeration – Suction Pipes Insulation	
	3.26 3.27	ENERGY STAR Clothes Washer	
	3.28	Electric Resistance Water Heaters	. <u>১८၁১ՍՀ</u>

	3.29	Heat Pump Water Heaters	<u>. 330307</u>
	3.30	LED Channel Signage	. 337314
	3.31	Low Flow Pre-Rinse Sprayers	340 317
	3.32	Small C/I HVAC Refrigerant Charge Correction	345 322
	3.33	Refrigeration – Special Doors with Low or No Anti-Sweat Heat for Low Temp C	
	3.34	ENERGY STAR Room Air Conditioner	
4		AND RESPONSE	
	4.1	Determination of Act 129 Peak Load Reductions	
	4.2	Determine the "Top 100 Hours" (100 hours of highest peak load)	
	4.3	Determine the Act 129 Average Peak Load Reduction During the 100 Peak Ho	
5	APPI	ENDICES	
	5.1	Appendix A: Measure Lives	
	5.2	Appendix B: Relationship between Program Savings and Evaluation Savings	
	5.3	Appendix C: Lighting Audit and Design Tool.	
	5.4	Appendix D: Motor & VFD Audit and Design Tool	
	5.5	Appendix E: Lighting Audit and Design Tool for New Construction Projects	
	5.6	Appendix F: Eligibility Requirements for Solid State Lighting Products in Comm	
		and Industrial Applications	
	5.7	Appendix G: Zip Code Mapping	372 348
1		RODUCTION	1
		Purpose	1
	1.2	- Definitions	1
	1.3—	-General Framework	3
	1.4—	-Algorithms	3
	1.5—	-Data and Input Values	4
	1.6	-Baseline-Estimates	5
	1.7—	-Resource Savings in Current and Future Program Years	5
	1.8	-Prospective Application of the TRM	5
	1.9	-Electric Resource Savings	6
	1.10	-Post-Implementation Review	6
	1.11 —	-Adjustments to Energy and Resource Savings	7
		-Calculation of the Value of Resource Savings	
		-Transmission and Distribution System Losses	8
	1.14	Measure Lives	8
	1.15	Custom Measures	9
	1.16	Impact of Weather	9
		Measure Applicability Based on Sector	 10
	1.18	Algorithms for Energy Efficient Measures	 10
<u>2</u> _	-RESI	DENTIAL MEASURES	11
		Electric HVAC	 12
	2.2	Electric Clothes Dryer with Moisture Sensor	 18
		Efficient Electric Water Heaters	 20
		-Electroluminescent Nightlight	2 4
	2.5	Furnace Whistle	 2 6
	26	Heat Pump Water Heaters	30

	2.7—	-Home Audit Conservation Kits	 35
	2.8-	-LED Nightlight	38
	2.9	Low Flow Faucet Aerators	40
	2.10	Low Flow Showerheads	44
	2.11	Programmable Thermostat	47
	2.12	Room AC (RAC) Retirement	 50
	2.13	-Smart Strip Plug Outlets	 56
	2.14	-Solar Water Heaters	 58
	2.15	Electric Water Heater Pipe Insulation	 62
	2.16	Residential Whole House Fans	 65
	2.17	Ductless Mini-Split Heat Pumps	 67
	2.18	Fuel Switching: Domestic Hot Water Electric to Gas	 72
	2.19	Fuel Switching: Heat Pump Water Heater to Gas Water Heater	 76
	2.20	Fuel Switching: Electric Heat to Gas Heat	82
	2.21	Ceiling / Attic and Wall Insulation	 85
	2.22	Refrigerator / Freezer Recycling and Replacement	 90
	2.23	Refrigerator / Freezer Retirement (and Recycling)	 93
	2.24	Residential New Construction	95
	2.25	ENERGY STAR Appliances	99
	2.26	-ENERGY STAR Lighting	105
	2.27	ENERGY STAR Windows	109
	2.28	ENERGY STAR Audit	111
	2.29	Home Performance with ENERGY STAR	112
	2.30	ENERGY STAR Televisions (Versions 4.1 and 5.1)	116
	2.31	-ENERGY STAR Office Equipment	120
	2.32	-ENERGY STAR LEDs	124
	2.33	Residential Occupancy Sensors	129
	2.34	-Holiday Lights	130
	2.35	-Low Income Lighting (FirstEnergy)	133
	2.36	-Water Heater Tank Wrap	136
	2.37	-Pool Pump Load Shifting	139
	2.38	High Efficiency Two-Speed Pool Pump	142
	2.39	-Variable Speed Pool Pumps (with Load Shifting Option)	144
2_		IMERCIAL AND INDUSTRIAL MEASURES	149
	3.1	-Baselines and Code Changes	149
	3.2	Lighting Equipment Improvements.	150
	3.3	Premium Efficiency Motors	167
	3.4	Variable Frequency Drive (VFD) Improvements	174
		-Variable Frequency Drive (VFD) Improvement for Industrial Air Compressors	177
	3.6—	-HVAC Systems	179
		-Electric Chillers	185
	3.8	-Anti-Sweat Heater Controls	189
		High-Efficiency Refrigeration/Freezer Cases	
		High-Efficiency Evaporator Fan Motors for Reach-In Refrigerated Cases	
		High-Efficiency Evaporator Fan Motors for Walk-in Refrigerated Cases	
		-ENERGY STAR Office Equipment	
		-Smart Strip Plug Outlets	
		1	

	3.14	-Beverage Machine Controls	215
	3.15	-High-Efficiency Ice Machines	217
	3.16	Wall and Ceiling Insulation	220
	3.17	Strip Curtains for Walk-In Freezers and Coolers	227
	3.18	Geothermal Heat Pumps	235
	3.19	Ductless Mini-Split Heat Pumps - Commercial < 5.4 tons	244
	3.20	-ENERGY STAR Electric Steam Cooker	251
	3.21	-Refrigeration - Night Covers for Display Cases	255
	3.22	Office Equipment - Network Power Management Enabling	257
	3.23	Refrigeration - Auto Closers	259
	3.24	Refrigeration - Door Gaskets for Walk in Coolers and Freezers	261
	3.25	Refrigeration – Suction Pipes Insulation	264
	3.26	Refrigeration – Evaporator Fan Controllers	266
	3.27	ENERGY STAR Clothes Washer	268
	3.28	Electric Resistance Water Heaters	272
	3.29	Heat Pump Water Heaters	277
	3.30	LED Channel Signage	284
	3.31	Low Flow Pre Rinse Sprayers	287
	3.32	Small C/I HVAC Refrigerant Charge Correction	292
	3.33	-Refrigeration - Special Doors with Low or No Anti-Sweat Heat for Low Temp Case	296
	3.34	ENERGY STAR Room Air Conditioner	299
4	DEM	AND RESPONSE	301
	4.1	Determination of Act 129 Peak Load Reductions	301
	4.2	Determine the "Top 100 Hours" (100 hours of highest peak load)	302
	4.3—	-Determine the Act 129 Average Peak Load Reduction During the 100 Peak Hours	304
5	APPI	ENDICES	307
	5.1	-Appendix A: Measure Lives	307
	5.2-	-Appendix B: Relationship between Program Savings and Evaluation Savings	311
	5.3	-Appendix C: Lighting Audit and Design Tool	312
	5.4	-Appendix D: Motor & VFD Audit and Design Tool	313
	5.5—	-Appendix E: Eligibility Requirements for Solid State Lighting Products in Commercia	al-
		and Industrial Applications	314
	5.6-	-Appendix F: Zip Code Mapping	317

List of Tables

Table 1-1: Periods for Energy Savings and Coincident Peak Demand Savings	<u> 66</u>
Table 1-2: California CZ Mapping Table	
Table 2-1: Residential Electric HVAC - References	15 15
Table 2-2: Efficient Electric Water Heater Calculation Assumptions	23 23
Table 2-3: Energy Savings and Demand Reductions	23 23
Table 2-4: Electroluminescent Nightlight - References	26 26
Table 2-5: Furnace Whistle - References	27 27
Table 2-6: EFLH for various cities in Pennsylvania (TRM Data)	28 28
Table 2-7: Assumptions and Results of Deemed Savings Calculations (Pittsburgh, PA)	
Table 2-8: Assumptions and Results of Deemed Savings Calculations (Philadelphia, PA)	29 29
Table 2-9: Assumptions and Results of Deemed Savings Calculations (Harrisburg, PA)	29 29
Table 2-10: Assumptions and Results of Deemed Savings Calculations (Erie, PA)	30 29
Table 2-11: Assumptions and Results of Deemed Savings Calculations (Allentown, PA)	30 30
Table 2-12: Assumptions and Results of Deemed Savings Calculations (Scranton, PA)	3030
Table 2-13: Assumptions and Results of Deemed Savings Calculations (Williamsport, PA)	<u> 3030</u>
Table 2-14: Heat Pump Water Heater Calculation Assumptions	3333
Table 2-15: Energy Savings and Demand Reductions	3535
Table 2-16: Home Audit Conversion Kit Calculation Assumptions	
Table 2-17: LED Nightlight - References	3939
Table 2-18: Low Flow Faucet Aerator Calculation Assumptions	
Table 2-19: Residential Electric HVAC Calculation Assumptions	
Table 2-20: Room AC Retirement Calculation Assumptions	54 54
Table 2-21: RAC Retirement-Only EFLH and Energy Savings by City	55 5 4
Table 2-22: Preliminary Results from ComEd RAC Recycling Evaluation	
Table 2-23: Smart Strip Plug Outlet Calculation Assumptions	
Table 2-24: Solar Water Heater Calculation Assumptions	62 62
Table 2-25: Whole House Fan Deemed Energy Savings by PA City	68 68
Table 2-26: DHP – Values and References	
Table 2-27: DHP – Heating Zones	73 73
Table 2-28: Calculation Assumptions for Fuel Switching, Domestic Hot Water Electric to Gas	77 77
Table 2-29: Energy Savings and Demand Reductions for Fuel Switching, Domestic Hot Water	er
Electric to Gas	78 78
Table 2-30: Gas Consumption for Fuel Switching, Domestic Hot Water Electric to Gas	78 78
Table 2-31: Calculation Assumptions for Heat Pump Water Heater to Gas Water Heater	
Table 2-32: Energy Savings and Demand Reductions for Heat Pump Water Heater to Gas V	Vater
Heater	
Table 2-33: Gas Consumption for Heat Pump Water Heater to Gas Water Heater	8483
Table 2-34: Default values for algorithm terms, Fuel Switching, Electric Heat to Gas Heat	
Table 2-35: Default values for algorithm terms, Ceiling/Attic and Wall Insulation	
Table 2-36: EFLH, CDD and HDD by City	
Table 2-37: Refrigerator Per Unit "Gross" Energy Consumption Calculation Using Regressio	n
Model and Program Values (Program values obtained from PY3 data from the seven Act 12	
EDCs)	9695

<u>Table 2-38: Freezer Per Unit "Gross" Energy Consumption Calculation Using Regression</u>	Model
and Program Values (Program values obtained from PY3 data from the seven Act 129 ED	OCs)
	97 96
Table 2-39: Refrigerator Per Unit "Net" Energy Consumption Calculation Using Equation #	<u> </u>
(adjusts for units that are removed but then replaced)	
Table 2-40: Freezer Per Unit "Net" Energy Consumption Calculation Using Equation #2 (a	<u>idjusts</u>
for units that are removed but then replaced)	
Table 2-42: Baseline Insulation and Fenestration Requirements by Component (Equivalent	<u>nt U-</u>
<u>Factors</u>)	
Table 2-43: Energy Star Homes - User Defined Reference Home	<u> 111104</u>
Table 2-44: Federal Standard and ENERGY STAR Refrigerators Maximum Annual Energ	_
Consumption if Configuration and Volume Known	
Table 2-45: Default Savings Values for ENERGY STAR Refrigerators	
Table 2-46: ENERGY STAR Most Efficient Annual Energy Usage if Configuration and Vol	
Known	
Table 2-47: Default Savings Values for ENERGY STAR Most Efficient Refrigerators	<u>116109</u>
Table 2-48: Federal Freezer Standards Effective as of the 2015 TRM	. <u>117110</u>
Table 2-49: Federal Standard and ENERGY STAR Freezers Maximum Annual Energy	
Consumption if Configuration and Volume Known	
Table 2-50: Default Savings Values for ENERGY STAR Freezers	
Table 2-51: Federal Freezer Standards Effective as of the 2015 TRM	
Table 2-52: ENERGY STAR Clothes Washers - References	
Table 2-53: Default Clothes Washer Savings	
Table 2-54: Future Federal Standards for Clothes Washers	
Table 2-55: Federal Standard and ENERGY STAR v 5.0 Residential Dishwaster Stanard	
Table 2-56: ENERGY STAR Dishwashers - References	
Table 2-57: Default Dishwasher Hot Water Fuel Mix	
Table 2-58: Default Dishwasher Energy and Demand Savings	
Table 2-59: Dehumidifier Minimum Federal Efficiency and ENERGY STAR Standards	
Table 2-60: Dehumidifier Default Energy Savings	
Table 2-61: RAC Federal Minimum Efficiency and ENERGY STAR Standards	134127
Table 2-62: Casement-only and Casement-Slider RAC Federal Minimum Efficiency and	
ENERGY STAR Standards	
Table 2-63: Reverse-Cycle RAC Federal Minimum Efficiency Standards	
Table 2-64: Deemed EFLH and Default Energy Savings	
Table 2-65: RAC Federal Minimum Efficiency and ENERGY STAR Version 3.0 Standards	
(effective 2014 TRM)	<u>136129</u>
Table 2-66: Casement-Only and Casement-Slider RAC Federal Minimum Efficiency and	
ENERGY STAR Version 3.0 Standards (effective 2014 TRM)	
Table 2-67: Reverse-Cycle RAC Federal Minimum Efficiency Standards and ENERGY ST	
Version 3.0 Standards (effective 2014 TRM)	
Table 2-69. Baseline Wattage by Lumen Output	
Table 2-70: Default Savings for ENERGY STAR Indoor Fixtures, ENERGY STAR Outdoo	
Fixtures and ENERGY STAR Torchieres (per fixture)	
Table 2-71:Default Savings for ENERGY STAR Ceiling Fans Light Fixtures (per fixture)	
Table 2-72: ENERGY STAR Windows - References	
Table 2-73: ENERGY STAR TVs - References	156143

Table 2-74: ENERGY STAR TVs Version 5.3 maximum power consumption	<u>157144</u>
Table 2-75: TV power consumption.	158 145
Table 2-76: Deemed energy savings for ENERGY STAR Version 5.3 and ENERGY STAF	R Most
Efficient TVs	158 145
Table 2-77: Deemed coincident demand savings for ENERGY STAR Version 5.3 and EN	ERGY
STAR Most Efficient TVs.	159 146
Table 2-78: ENERGY STAR Office Equipment - References	162 149
Table 2-79: ENERGY STAR Office Equipment Energy and Demand Savings Values	163 150
Table 2-80. General Service Lamps	165 151
Table 2-81: Reflector Lamps	166 152
Table 2-82: Residential LED Variables	168 153
Table 2-83: Residential Occupancy Sensors Calculations Assumptions	169 155
Table 2-84: Holiday Lights Assumptions	171 157
Table 2-85: Low Income Lighting Calculations Assumptions	<u>174160</u>
Table 2-86: Energy Savings and Demand Reductions	175 161
Table 2-87: Water Heater Tank Wrap – Default Values	<u>177163</u>
Table 2-88: Deemed savings by water heater capacity.	178 164
Table 2-89: Pool Pump Load Shifting Assumptions	180 166
Table 2-90: Single Speed Pool Pump Specification	181 167
Table 2-91: High Efficiency Pool and Motor - Two Speed Pump Calculations Assumptions	182 168
Table 2-92: Two-Speed Pool Pump Deemed Savings Values	
Table 2-93: Residential VFD Pool Pumps Calculations Assumptions	185 171
Table 2-94: Single Speed Pool Pump Specification	186 172
Table 3-1: Lighting Power Densities from ASHRAE 90.1-2007 Building Area Method	195 181
Table 3-2: Lighting Power Densities from ASHRAE 90.1-2007 Space-by-Space Method	
Table 3-3: Baseline Exterior Lighting Power Densities	198184
Table 3-4: Lighting HOU and CF by Building Type or Function	<u> 199485</u>
Table 3-5: Interactive Factors and Other Lighting Variables	205188
Table 3-6: Lighting Controls Assumptions	206189
Table 3-7: Savings Control Factors Assumptions	206 189
Table 3-8: Assumptions for LED Traffic Signals	<u>208</u> 191
Table 3-9: LED Traffic Signals	209 192
Table 3-10: Reference Specifications for Above Traffic Signal Wattages	210 193
Table 3-11: LED Exit Signs	<u>211194</u>
Table 3-12: Building Mechanical System Variables for Premium Efficiency Motor Calculation	<u>ons</u>
Table 3-13: Baseline Motor Nominal Efficiencies for PY1 and PY2	214 197
Table 3-14: Baseline Motor Nominal Efficiencies for PY3 and PY4	215 198
Table 3-15: Stipulated Hours of Use for Motors in Commercial Buildings	216 199
Table 3-17: ESF and DSF for Typical Commercial VFD Installations'	224 204
Table 3-18: Variables for Industrial Air Compressor Calculation	
Table 3-19: Variables for HVAC Systems	230 209
Table 3-20: HVAC Baseline Efficiencies	
Table 3-21: Cooling EFLH for Pennsylvania Cities'	232 211
Table 3-22: Heating EFLH for Pennsylvania Cities	233 212
Table 3-23: Electric Chiller Variables	
Table 3-24: Electric Chiller Baseline Efficiencies (IECC 2009)	237 216

Table 3-25: Chiller Cooling EFLH by Location'	<u>238217</u>
Table 3-26 Anti-Sweat Heater Controls – Values and References	<u>241220</u>
Table 3-27 Recommended Fully Deemed Impact Estimates	242 221
Table 3-28: Refrigeration Cases - References	243 222
Table 3-29: Refrigeration Case Efficiencies	244 223
Table 3-30: Freezer Case Efficiencies	244223
Table 3-31: Refrigeration Case Savings	244 223
Table 3-32: Freezer Case Savings	245 224
Table 3-33: Variables for High-Efficiency Evaporator Fan Motor	247 226
Table 3-34: Variables for HE Evaporator Fan Motor	248 227
Table 3-35: Shaded Pole to PSC Deemed Savings	249 228
Table 3-36: PSC to ECM Deemed Savings	249 228
Table 3-37: Shaded Pole to ECM Deemed Savings	250 229
Table 3-38: Default High-Efficiency Evaporator Fan Motor Deemed Savings	250 229
Table 3-39: Variables for High-Efficiency Evaporator Fan Motor	253 232
Table 3-40: Variables for HE Evaporator Fan Motor	254 233
Table 3-41: PSC to ECM Deemed Savings	255 234
Table 3-42: Shaded Pole to ECM Deemed Savings	256 235
Table 3-43: Default High-Efficiency Evaporator Fan Motor Deemed Savings	256 235
Table 3-44: ENERGY STAR Office Equipment - References	260 239
Table 3-45: ENERGY STAR Office Equipment Energy and Demand Savings Values	261 240
Table 3-46: ENERGY STAR Office Equipment Measure Life	262 241
Table 3-47: Smart Strip Calculation Assumptions.	263 242
Table 3-48: Beverage Machine Controls Energy Savings	266 245
Table 3-49: Ice Machine Reference values for algorithm components	268247
Table 3-50: Ice Machine Energy Usage	
Table 3-50: Ice Machine Energy Usage	269248
	269248 271250
Table 3-51: Non-Residential Insulation – Values and References	. 269248 . 271250 . 273252
<u>Table 3-51: Non-Residential Insulation – Values and References.</u> <u>Table 3-52: Ceiling R-Values by Building Type.</u>	269248 271250 273252 273252
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type. Table 3-53: Wall R-Values by Building Type.	. 269248 . 271250 . 273252 . 273252 . 274253
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings	269248 271250 273252 273252 274253 275254
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities	269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities. Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains	. 269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259 . 281260
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities. Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains. Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets.	. 269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259 . 281260
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities. Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains. Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets. Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores.	. 269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259 . 281260 . 281260
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities. Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains. Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets. Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores. Table 3-59: Strip Curtain Calculation Assumptions for Restaurant.	. 269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259 . 281260 . 281260 . 282261 . 283262
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities. Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains. Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores. Table 3-59: Strip Curtain Calculation Assumptions for Restaurant. Table 3-60: Strip Curtain Calculation Assumptions for Refrigerated Warehouse.	. 269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259 . 281260 . 281260 . 282261 . 283262 . 286265
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type	. 269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259 . 281260 . 281260 . 282261 . 283262 . 286265 . 289268
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores. Table 3-59: Strip Curtain Calculation Assumptions for Restaurant Table 3-60: Strip Curtain Calculation Assumptions for Refrigerated Warehouse Table 3-61: Water Source or Geothermal Heat Pump Baseline Assumptions Table 3-62: Geothermal Heat Pump—Values and References	. 269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259 . 281260 . 281260 . 28261 . 283262 . 286265 . 289268 . 291270
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities. Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets. Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores. Table 3-59: Strip Curtain Calculation Assumptions for Restaurant. Table 3-60: Strip Curtain Calculation Assumptions for Refrigerated Warehouse. Table 3-61: Water Source or Geothermal Heat Pump Baseline Assumptions Table 3-63: Federal Minimum Efficiency Requirements for Motors.	. 269248 . 271250 . 273252 . 273252 . 274253 . 275254 . 280259 . 281260 . 281260 . 282261 . 283262 . 289268 . 291270 . 291270
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities. Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains. Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores. Table 3-59: Strip Curtain Calculation Assumptions for Restaurant. Table 3-60: Strip Curtain Calculation Assumptions for Refrigerated Warehouse. Table 3-61: Water Source or Geothermal Heat Pump Baseline Assumptions Table 3-62: Geothermal Heat Pump— Values and References. Table 3-63: Federal Minimum Efficiency Requirements for Motors Table 3-64: Ground/Water Loop Pump and Circulating Pump Efficiency.	269248 271250 273252 273252 274253 275254 280259 281260 281260 282261 283262 283262 289268 291270 291270
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type Table 3-53: Wall R-Values by Building Type Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings Table 3-55: Cooling EFLH for Key PA Cities Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores. Table 3-59: Strip Curtain Calculation Assumptions for Restaurant Table 3-60: Strip Curtain Calculation Assumptions for Refrigerated Warehouse Table 3-61: Water Source or Geothermal Heat Pump Baseline Assumptions Table 3-62: Geothermal Heat Pump— Values and References Table 3-63: Federal Minimum Efficiency Requirements for Motors Table 3-64: Ground/Water Loop Pump and Circulating Pump Efficiency Table 3-65: Default Baseline Equipment Efficiencies	269248 271250 273252 273252 274253 275254 280259 281260 281260 282261 283262 283262 289268 291270 291270 292271 296275
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type	269248 271250 273252 273252 274253 275254 280259 281260 282261 283262 288265 289268 291270 291270 292271 296275 298277
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type	269248 .271250 .273252 .273252 .274253 .275254 .280259 .281260 .281260 .282261 .283262 .286265 .289268 .291270 .291270 .292271 .296275 .298277 .299278
Table 3-51: Non-Residential Insulation – Values and References. Table 3-52: Ceiling R-Values by Building Type	269248 .271250 .273252 .273252 .274253 .275254 .280259 .281260 .282261 .283262 .286265 .289268 .291270 .291270 .292271 .296275 .298277 .299278 .302281

Table 3-72: Savings Factors	<u>. 306285</u>
Table 3-73: Network Power Controls, Per Unit Summary Table	308286
Table 3-74: Refrigeration Auto Closers Calculations Assumptions	311 289
Table 3-75: Door Gasket Assumptions	312 290
Table 3-76: Door Gasket Savings per Linear Foot (CZ 4 Allentown, Pittsburgh, Williamsto	
Table 3-77: Door Gasket Savings per Linear Foot (CZ 8 Harrisburg)	
Table 3-78: Door Gasket Savings per Linear Foot (CZ 13 Philadelphia)	
Table 3-79: Door Gasket Savings per Linear Foot (CZ 16 Scranton)	
Table 3-80: Door Gasket Savings per Linear Foot (CZ 6 Erie)	
Table 3-81: Insulate Bare Refrigeration Suction Pipes Calculations Assumptions	
Table 3-82: Insulate Bare Refrigeration Suction Pipes Savings per Linear Foot	
Table 3-83: Evaporator Fan Controller Calculations Assumptions	
Table 3-84: Commercial Clothes Washer Calculation Assumptions	
Table 3-85: Deemed Savings for ENERGY STAR Clothes Washer	
Table 3-86: Typical water heating loads.	
Table 3-87: Electric Resistance Water Heater Calculation Assumptions	
Table 3-88: Energy Savings and Demand Reductions	329 306
Table 3-89: Typical water heating loads.	331 308
Table 3-90: COP Adjustment Factors	333310
•	334311
Table 3-92: Energy Savings and Demand Reductions	
Table 3-93: LED Channel Signage Calculation Assumptions	
Table 3-94: Low Flow Pre-Rinse Sprayer Calculations Assumptions	343 <mark>320</mark>
Table 3-95: Refrigerant Charge Correction Calculations Assumptions	346323
Table 3-96: Refrigerant charge correction COP degradation factor (RCF) for various relati	ve
charge adjustments for both TXV metered and non-TXV units	346323
Table 3-97: Special Doors with Low or No Anti-Sweat Heat for Low Temp Case Calculation	<u>ons</u>
Assumptions	<u>351328</u>
Table 3-98: Variables for HVAC Systems	352 <mark>329</mark>
Table 3-99: Room Air Conditioner Baseline Efficiencies	<u>353330</u>
Table 3-100: Cooling EFLH for Pennsylvania Cities	<u>353</u> 330
Table 1-1: Periods for Energy Savings and Coincident Peak Demand Savings	6
Table 1-2: California CZ Mapping Table	 10
Table 2-1: Residential Electric HVAC - References	 15
Table 2-2: Efficient Electric Water Heater Calculation Assumptions	22
Table 2-3: Energy Savings and Demand Reductions	22
Table 2-4: Electroluminescent Nightlight - References	 25
Table 2-5: Furnace Whistle - References	 26
Table 2-6: EFLH for various cities in Pennsylvania (TRM Data)	 27
Table 2-7: Assumptions and Results of Deemed Savings Calculations (Pittsburgh, PA)	 28
Table 2-8: Assumptions and Results of Deemed Savings Calculations (Philadelphia, PA)	
Table 2-9: Assumptions and Results of Deemed Savings Calculations (Harrisburg, PA)	2 8
Table 2-10: Assumptions and Results of Deemed Savings Calculations (Erie, PA)	
Table 2-11: Assumptions and Results of Deemed Savings Calculations (Allentown, PA)	 29
Table 2-12: Heat Pump Water Heater Calculation Assumptions	32
Table 2-13: Energy Savings and Demand Reductions	34

Table 2-14: Home Audit Conversion Kit Calculation Assumptions	36
Table 2-15: LED Nightlight - References	38
Table 2-16: Low Flow Faucet Aerator Calculation Assumptions	42
Table 2-17: Residential Electric HVAC Calculation Assumptions	48
Table 2-18: Room AC Retirement Calculation Assumptions	 5 3
Table 2-19: RAC Retirement-Only EFLH and Energy Savings by City	 5 3
Table 2-20: Preliminary Results from ComEd RAC Recycling Evaluation	 5 5
Table 2-21: Smart Strip Plug Outlet Calculation Assumptions	 5 8
Table 2-22: Solar Water Heater Calculation Assumptions	61
Table 2-23: Whole House Fan Deemed Energy Savings by PA City	 67
Table 2-24: DHP – Values and References	 7 0
Table 2-25: DHP – Heating Zones	 7 2
Table 2-26: Calculation Assumptions for Fuel Switching, Domestic Hot Water Electric to Ga	s 75
Table 2-27: Energy Savings and Demand Reductions for Fuel Switching, Domestic Hot Wat	
Electric to Gas	 7 6
Table 2-28: Gas Consumption for Fuel Switching, Domestic Hot Water Electric to Gas	 7 6
Table 2-29: Calculation Assumptions for Heat Pump Water Heater to Gas Water Heater	 7 9
Table 2-30: Energy Savings and Demand Reductions for Heat Pump Water Heater to Gas \	
Heater	81
Table 2-31: Gas Consumption for Heat Pump Water Heater to Gas Water Heater	81
Table 2-32: Default values for algorithm terms, Fuel Switching, Electric Heat to Gas Heat	85
Table 2-33: Default values for algorithm terms, Ceiling/Attic and Wall Insulation	88
Table 2-34: EFLH, CDD and HDD by City	90
Table 2-35: Refrigerator/Freezer Recycling and Replacement Default Savings	92
Table 2-36: Refrigerator/Freezer Retirement Energy and Demand Savings	95
Table 2-37: Residential New Construction – References	97
Table 2-38: Baseline Insulation and Fenestration Requirements by Component (Equivalent	U-
Factors)	98
Table 2-39: Energy Star Homes - User Defined Reference Home	98
Table 2-40: ENERGY STAR Appliances - References	102
Table 2-41: Energy Savings from ENERGY STAR	103
Table 2-42: ENERGY STAR Lighting - References	108
Table 2-43. Baseline Wattage by Lumen Output of CFL	109
Table 2-44: ENERGY STAR Windows - References	111
Table 2-45: ENERGY STAR TVs - References	117
Table 2-46: ENERGY STAR TVs Version 4.1 and 5.1 maximum power consumption	118
	119
Table 2-47: TV power consumption	119
Table 2-48: Deemed energy savings for ENERGY STAR Version 4-1 and 5-1 TVs	
Table 2-48: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1 TVs.	√s.
	√s. 120
Table 2-48: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1 TVs	120
Table 2-48: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1 TVs	120 123
Table 2-48: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1 TVs	120 123 124
Table 2-48: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1 TVs	120 123 124 126
Table 2-48: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1 TVs. Table 2-49: Deemed coincident demand savings for ENERGY STAR Version 4.1 and 5.1 TV Table 2-50: ENERGY STAR Office Equipment - References Table 2-51: ENERGY STAR Office Equipment Energy and Demand Savings Values Table 2-52: General Service Lamps Table 2-53: Reflector Lamps	120 123 124 126 127
Table 2-48: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1 TVs. Table 2-49: Deemed coincident demand savings for ENERGY STAR Version 4.1 and 5.1 TV Table 2-50: ENERGY STAR Office Equipment - References. Table 2-51: ENERGY STAR Office Equipment Energy and Demand Savings Values. Table 2-52: General Service Lamps. Table 2-53: Reflector Lamps. Table 2-54: Residential LED Variables.	120 123 124 126 127
Table 2-48: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1 TVs. Table 2-49: Deemed coincident demand savings for ENERGY STAR Version 4.1 and 5.1 TV Table 2-50: ENERGY STAR Office Equipment - References Table 2-51: ENERGY STAR Office Equipment Energy and Demand Savings Values Table 2-52: General Service Lamps Table 2-53: Reflector Lamps	120 123 124 126 127

Table 2-57: Low Income Lighting Calculations Assumptions	 135
Table 2-58: Energy Savings and Demand Reductions	136
Table 2-59: Water Heater Tank Wrap - Default Values	 138
Table 2-60: Deemed savings by water heater capacity.	 139
Table 2-61: Pool Pump Load Shifting Assumptions	 141
Table 2-62: Single Speed Pool Pump Specification	 142
Table 2-63: High Efficiency Pool and Motor - Two Speed Pump Calculations Assumptions	 143
Table 2-64: Two-Speed Pool Pump Deemed Savings Values	 144
Table 2-65: Residential VFD Pool Pumps Calculations Assumptions	 146
Table 2-66: Single Speed Pool Pump Specification	 147
Table 3-1: Lighting Power Densities from ASHRAE 90.1-2007 Building Area Method	 155
Table 3-2: Lighting Power Densities from ASHRAE 90.1-2007 Space by-Space Method	 156
Table 3-3: Baseline Exterior Lighting Power Densities	 158
Table 3-4: Lighting HOU and CF by Building Type or Function	 159
Table 3-5: Interactive Factors and Other Lighting Variables	 162
Table 3-6: Lighting Controls Assumptions	 163
Table 3-7: Assumptions for LED Traffic Signals	 164
Table 3-8: LED Traffic Signals	 165
Table 3-9: Reference Specifications for Above Traffic Signal Wattages	 166
Table 3-10: LED Exit Signs	167
Table 3-11: Building Mechanical System Variables for Premium Efficiency Motor Calculation	s 169
Table 3-12: Baseline Motor Nominal Efficiencies for PY1 and PY2	170
Table 3-13: Baseline Motor Nominal Efficiencies for PY3 and PY4	171
Table 3-14: Stipulated Hours of Use for Motors in Commercial Buildings	172
Table 3-15: Notes for Stipulated Hours of Use Table	174
Table 3-16: Variables for VFD Calculations	176
Table 3-17: ESF and DSF for Typical Commercial VFD Installations	176
Table 3-18: Variables for Industrial Air Compressor Calculation	179
Table 3-19: Variables for HVAC Systems	182
Table 3-20: HVAC Baseline Efficiencies	183
Table 3-21: Cooling EFLH for Pennsylvania Cities	184
Table 3-22: Heating EFLH for Pennsylvania Cities	185
Table 3-23: Electric Chiller Variables	187
Table 3-24: Electric Chiller Baseline Efficiencies (IECC 2009)	188
Table 3-25: Chiller Cooling EFLH by Location	189
Table 3-26 Anti-Sweat Heater Controls – Values and References	192
Table 3-27 Recommended Fully Deemed Impact Estimates	193
Table 3-28: Refrigeration Cases - References	194
Table 3-29: Refrigeration Case Efficiencies	195
Table 3-30: Freezer Case Efficiencies	195
Table 3-31: Refrigeration Case Savings	195
Table 3-32: Freezer Case Savings.	196
Table 3-33: Variables for High-Efficiency Evaporator Fan Motor.	198
Table 3 34: Variables for HE Evaporator Fan Motor	199
Table 3-35: Shaded Pole to PSC Deemed Savings	199
Table 3-36: PSC to ECM Deemed Savings	 200 200
Table 3-37: Shaded Pole to ECM Deemed Savings	 200 201

Table 3-38: Default High-Efficiency Evaporator Fan Motor Deemed Savings	201
Table 3-39: Variables for High-Efficiency Evaporator Fan Motor	204
Table 3-40: Variables for HE Evaporator Fan Motor	205
Table 3-41: PSC to ECM Deemed Savings	206
Table 3-42: Shaded Pole to ECM Deemed Savings	207
Table 3-43: Default High-Efficiency Evaporator Fan Motor Deemed Savings	207
Table 3-44: ENERGY STAR Office Equipment - References	211
Table 3-45: ENERGY STAR Office Equipment Energy and Demand Savings Values	212
Table 3-46: ENERGY STAR Office Equipment Measure Life	213
Table 3-47: Smart Strip Calculation Assumptions	214
Table 3-48: Beverage Machine Controls Energy Savings	217
Table 3-49: Ice Machine Reference values for algorithm components	219
Table 3-50: Ice Machine Energy Usage	220
Table 3-51: Non-Residential Insulation – Values and References	222
Table 3-52: Ceiling R-Values by Building Type	224
Table 3-53: Wall R-Values by Building Type	224
Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings	225
Table 3-55: Cooling EFLH for Key PA Cities	226
Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains	231
Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets	232
Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores	232
Table 3-59: Strip Curtain Calculation Assumptions for Restaurant	233
Table 3-60: Strip Curtain Calculation Assumptions for Refrigerated Warehouse	234
Table 3-61: Geothermal Heat Pump Baseline Assumptions	237
Table 3-62: Geothermal Heat Pump- Values and References	240
Table 3-63: Federal Minimum Efficiency Requirements for Motors	242
Table 3-64: Ground Loop Pump Efficiency	242
Table 3-65: Default Baseline Equipment Efficiencies	243
Table 3-66: DHP – Values and References	247
Table 3-67: Cooling EFLH for Pennsylvania Cities	249
Table 3-68: Heating EFLH for Pennsylvania Cities	250
Table 3-69: Steam Cooker - Values and References	253
Table 3-70: Default Values for Electric Steam Cookers by Number of Pans	254
Table 3-71: Night Covers Calculations Assumptions	257
Table 3-72: Savings Factors	257
Table 3-73: Network Power Controls, Per Unit Summary Table	258
Table 3-74: Refrigeration Auto Closers Calculations Assumptions	261
Table 3-75: Door Gasket Assumptions	262
Table 3-76: Door Gasket Savings per Linear Foot (CZ 4 Allentown, Pittsburgh, Williamstown)	263
Table 3-77: Door Gasket Savings per Linear Foot (CZ 8 Harrisburg)	263
Table 3-78: Door Gasket Savings per Linear Foot (CZ 13 Philadelphia)	263
Table 3-79: Door Gasket Savings per Linear Foot (CZ 16 Scranton)	264
Table 3-80: Door Gasket Savings per Linear Foot (CZ 6 Erie)	264
	266
	266
	268
· · · · · · · · · · · · · · · · · · ·	271

Table 3-85: Deemed Savings for ENERGY STAR Clothes Washer	. 272
Table 3-86: Typical water heating loads	. 274
Table 3-87: Electric Resistance Water Heater Calculation Assumptions	. 276
Table 3-88: Energy Savings and Demand Reductions	. 277
Table 3-89: Typical water heating loads	. 279
Table 3-90: COP Adjustment Factors	. 282
Table 3-91: Electric Resistance Water Heater Calculation Assumptions	. 283
Table 3-92: Energy Savings and Demand Reductions	. 284
Table 3-93: LED Channel Signage Calculation Assumptions	. 287
Table 3-94: Low Flow Pre Rinse Sprayer Calculations Assumptions	. 291
Table 3-95: Refrigerant Charge Correction Calculations Assumptions	. 294
Table 3-96: Refrigerant charge correction COP degradation factor (RCF) for various relative-	
charge adjustments for both TXV metered and non-TXV units	. 295
Table 3-97: Special Doors with Low or No Anti-Sweat Heat for Low Temp Case Calculations	
Assumptions	. 299
Table 3-98: Variables for HVAC Systems	. 300
Table 3-99: Room Air Conditioner Baseline Efficiencies	. 301
Table 3, 100: Cooling EELH for Poppeylyania Cities	301

This Page Intentionally Left Blank

1 Introduction

The Technical Reference Manual (TRM) was developed to measure the resource savings from standard energy efficiency measures. The savings' algorithms use measured and customer data as input values in industry-accepted algorithms. The data and input values for the algorithms come from Alternative Energy Portfolio Standards (AEPS) application forms¹, EDC program application forms, industry accepted standard values (e.g. ENERGY STAR standards), or data gathered by Electric Distribution Companies (EDCs). The standard input values are based on the best available measured or industry data.

Some electric input values were derived from a review of literature from various industry organizations, equipment manufacturers, and suppliers. These input values are updated to reflect changes in code, federal standards and recent program evaluations.

1.1 Purpose

The TRM was developed for the purpose of estimating annual electric energy savings and coincident peak demand savings for a selection of energy efficient technologies and measures. The TRM provides guidance to the Administrator responsible for awarding Alternative Energy Credits (AECs). The revised TRM serves a dual purpose of being used to determine compliance with the AEPS Act, 73 P.S. §§ 1648.1-1648.8, and the energy efficiency and conservation requirements of Act 129 of 2008, 66 Pa.C.S. § 2806.1. The TRM will continue to be updated on an annual basis to reflect the addition of technologies and measures as needed to remain relevant and useful.

Resource savings to be measured include electric energy (kWh) and electric capacity (kW) savings. The algorithms in this document focus on the determination of the per unit savings for the energy efficiency and demand response measures. The algorithms and methodologies set forth in this document must be used to determine EDC reported gross savings and evaluation measurement and verification (EM&V) verified savings, unless an alternative measurement approach or custom measure protocols is submitted and approved for use.

1.2 Definitions

The TRM is designed for use with both the AEPS Act and Act 129; however, it contains words and terms that apply only to the AEPS or only to Act 129. The following definitions are provided to identify words and terms that are specific for implementation of the AEPS:

- Administrator/Program Administrator (PA) The Credit Administrator of the AEPS program
 that receives and processes, and approves AEPS Credit applications.
- <u>AEPS application forms</u> application forms submitted to qualify and register alternative energy facilities for alternative energy credits.
- Application worksheets part of the AEPS application forms.

SECTION 1: Introduction

Purpose Page

¹ Note: Information in the TRM specifically relating to the AEPS Act is shaded in gray.

- Alternative Energy Credits (AECs) A tradable instrument used to establish, verify, and
 measure compliance with the AEPS. One credit is earned for each 1000kWh of electricity
 generated (or saved from energy efficiency or conservation measures) at a qualified
 alternative energy facility.
- <u>EDC Estimated Savings</u> EDC estimated savings for projects and programs of projects which are enrolled in a program, but not yet completed and/or measured and verified (M&Ved). The savings estimates may or may not follow a TRM or CMP method. The savings calculations/estimates may or may not follow algorithms prescribed by the TRM or Custom Measure Protocols (CMP) and are based on non-verified, estimated or stipulated values.
- <u>EDC Reported Gross Savings</u> Also known as "EDC Claimed Savings". EDC estimated savings for projects and programs of projects which are completed and/or M&Ved. The estimates follow a TRM or CMP method. The savings calculations/estimates follow algorithms prescribed by the TRM or CMP and are based non-verified, estimated, stipulated, EDC gathered or measured values of key variables.
- Natural Equipment Replacement Measure The replacement of equipment that has failed or is at the end of its service life with a model that is more efficient than required by the codes and standards in effect at the time of replacement, or is more efficient than standard practice if there are no applicable codes or standards. The baseline used for calculating energy savings for natural equipment replacement measures is the applicable code, standard or standard practice. The incremental cost for natural equipment replacement measures is the difference between the cost of baseline and more efficient equipment. Examples of projects which fit in this category include replacement due to existing equipment failure, as well as replacement of equipment which may still be in functional condition, but which is operationally obsolete due to industry advances and is no longer cost effective to keep.
- New Construction Measure The substitution of efficient equipment for standard baseline equipment which the customer does not yet own. The baseline used for calculating energy savings is the construction of a new building or installation of new equipment that complies with applicable code, standard and standard practice in place at the time of construction/installation. The incremental cost for a new construction measure is the difference between the cost of the baseline and more efficient equipment. Examples of projects which fit in this category include installation of a new production line, construction of a new building, or an addition to an existing facility.
- Realization Rate The ratio of "Verified Savings" to "EDC Reported Gross Savings".
- Retrofit Measure (Early Replacement Measure) The replacement of existing equipment, which is functioning as intended and is not operationally obsolete, with a more efficient model primarily for purposes of increased efficiency. Retrofit measures have a dual baseline: for the estimated remaining useful life of the existing equipment the baseline is the existing equipment; afterwards the baseline is the applicable code, standard and standard practice expected to be in place at the time the unit would have been naturally replaced. If there are no known or expected changes to the baseline standards, the standard in effect at the time of retrofit is to be used. The incremental cost is the full cost of equipment replacement. In practice in order to avoid the uncertainty surrounding the determination of "remaining useful life" early replacement measure savings and costs sometimes follow natural equipment replacement baseline and incremental cost definitions. Examples of projects which fit in this

SECTION 1: Introduction

Definitions Page

category include upgrade of an existing production line to gain efficiency, upgrade of an existing, but functional lighting or HVAC system that is not part of a renovation/remodeling project, replacement of an operational chiller, or installation of a supplemental measure such as adding a Variable Frequency Drive (VFD) to an existing constant speed motor.

- <u>Substantial Renovation Measure</u> The substitution of efficient equipment for standard baseline equipment during the course of a major renovation project which removes existing, but operationally functional equipment. The baseline used for calculating energy savings is the installation of new equipment that complies with applicable code, standard and standard practice in place at the time of the substantial renovation. The incremental cost for a substantial renovation measure is the difference between the cost of the baseline and more efficient equipment. Examples include renovation of a plant which replaces an existing production line with a production line for a different product, substantial renovation of an existing building interior, replacement of an existing standard HVAC system with a ground source heat pump system.
- <u>Verified Savings</u> Evaluator estimated savings for projects and programs of projects which are completed and for which the impact evaluation and EM&V activities are completed. The estimates follow a TRM or CMP method. The savings calculations/estimates follow algorithms prescribed by the TRM or CMP and are based on verified values of stipulated variables, EDC or evaluator gathered data, or measured key variables.

For the Act 129 program, EDCs may, as an alternative to using the energy savings' values for standard measures contained in the TRM, submit a custom measure protocol with alternative measurement methods to support different energy savings' values. The alternative measurement methods are subject to review and approval by the Commission to ensure their accuracy.

General Framework 1.3

In general, energy and demand savings will be estimated using TRM stipulated values, measured values, customer data and information from the AEPS application forms, worksheets and field tools.

Three systems will work together to ensure accurate data on a given measure:

The application form that the customer or customer's agent submits with basic information.

Application worksheets and field tools with more detailed, site-specific data, input values and calculations.

Algorithms that rely on standard or site-specific input values based on measured data. Parts or all of the algorithms may ultimately be implemented within the tracking system, application forms and worksheets and field tools.

1.4 **Algorithms**

The algorithms that have been developed to calculate the energy and or demand savings are typically driven by a change in efficiency level between the energy efficient measure and the baseline level of efficiency. The following are the basic algorithms.

General Framework

– Re	v Date:	June	201220	13 (DRAFT)

 $\Delta kW = kW_{\text{base}} - kW_{\text{ee}}$

 $\Delta kW_{peak} = \Delta kW \times CF$

Where:

∆kWh

∆kW = Demand Savings

 ΔkW_{peak} = Coincident Peak Demand Savings

= ∆kW X EFLH

∆kWh = Annual Energy Savings

 kW_{base} = Connected load kW of baseline case.

 kW_{ee} = Connected load kW of energy efficient case.

EFLH = Equivalent Full Load Hours of operation for the installed

measure.

CF = Demand Coincidence Factor, defined as the fraction of the

total technology demand that is coincident with the utility system

summer peak, as defined by Act 129.

Other resource savings will be calculated as appropriate.

Specific algorithms for each of the measures may incorporate additional factors to reflect specific conditions associated with a measure. This may include factors to account for coincidence of multiple installations or interaction between different measures.

1.5 Data and Input Values

The input values and algorithms are based on the best available and applicable data. The input values for the algorithms come from the AEPS application forms, EDC data gathering, or from standard values based on measured or industry data.

Many input values, including site-specific data, come directly from the AEPS application forms, EDC data gathering, worksheets and field tools. Site-specific data on the AEPS application forms and EDC data gathering are used for measures with important variations in one or more input values (e.g., delta watts, efficiency level, capacity, etc.).

Standard input values are based on the best available measured or industry data, including metered data, measured data from other state evaluations (applied prospectively), field data, and standards from industry associations. The standard values for most commercial and industrial measures are supported by end-use metering for key parameters for a sample of facilities and

circuits. These standard values are based on five years of metered data for most measures².—

Data that were metered over that time period are from measures that were installed over aneight year period. The original TRM included many input values based on program evaluations of New Jersey's Clean Energy Programs and other similar programs in the northeast region.

For the standard input assumptions for which metered or measured data were not available, the input values (e.g., delta watts, delta efficiency, equipment capacity, operating hours, coincidence factors) were assumed based on best available industry data or standards. These input values were based on a review of literature from various industry organizations, equipment manufacturers and suppliers.

1.6 Baseline Estimates

For all new construction and replacement of non-working equipment, the ΔkW and ΔkWh values are based on standard efficiency equipment versus new high-efficiency equipment. For early replacement measures, the ΔkW and ΔkWh values are based on existing equipment versus new high-efficiency equipment. This approach encourages residential and business consumers to replace working inefficient equipment and appliances with new high-efficiency products rather than taking no action to upgrade or only replacing them with new standard-efficiency products. The baseline estimates used in the TRM are documented in baseline studies or other market information. Baselines will be updated to reflect changing codes, practices and market transformation effects.

1.7 Resource Savings in Current and Future Program Years

AECs and energy efficiency and demand response reduction savings will apply in equal annual amounts corresponding to either PJM planning years or calendar years beginning with the year deemed appropriate by the Administrator, and lasting for the approved life of the measure for AEPS Credits. Energy efficiency and demand response savings associated with Act 129 can claim savings for up to fifteen years. For Act 129 requirements, annual savings may be claimed starting in the month of the in-service date for the measure.

1.8 Prospective Application of the TRM

The TRM will be applied prospectively. The input values are from the AEPS application forms, EDC program application forms, EDC data gathering and standard input values (based on measured data including metered data and evaluation results). The TRM will be updated annually based on new information and available data and then applied prospectively for future program years. Updates will not alter the number of AEPS Credits, once awarded, by the Administrator, nor will it alter any energy savings or demand reductions already in service and within measure life. Any newly approved measure, whether in the TRM or approved as an interim protocol, may be applied retrospectively consistent with the EDC's approved plan. If any errors are discovered in the TRM or clarifications are required, those corrections or clarifications should be applied to the associated measure calculations for the current program year, if applicable.

Baseline Estimates Page :

² Values for lighting, air conditioners, chillers and motors are based on measured usage from a large sample of participants from 1995 through 1999. Values for heat pumps reflect metered usage from 1996 through 1998 and variable speed drives reflect metered usage from 1995 through 1998.

1.9 Electric Resource Savings

Algorithms have been developed to determine the annual electric energy and electric coincident peak demand savings.

Annual electric energy savings are calculated and then allocated separately by season (summer and winter) and time of day (on-peak and off-peak). Summer coincident peak demand savings are calculated using a demand savings algorithm for each measure that includes a coincidence factor. Application of this coincidence factor converts the demand savings of the measure, which may not occur at time of system peak window, to demand savings that is expected to occur during the top 100 hours. This coincidence factor applies to the top 100 hours as defined in the Implementation Order as long as the EE&C measure class is operable during the summer peak hours.

Period	Energy Savings	Coincident Peak Demand Savings
Summer	May through September	June through September
Winter	October through April	N/A
Peak	8:00 a.m. to 8:00 p.m. MonFri.	12:00 p.m. to 8:00 p.m.
Off-Peak	8:00 p.m. to 8:00 a.m. MonFri., 12 a.m. to 12_pa.m. Sat/Sun & holidays	N/A

Table 1-1: Periods for Energy Savings and Coincident Peak Demand Savings

The time periods for energy savings and coincident peak demand savings were chosen to best fit the Act 129 requirement, which reflects the seasonal avoided cost patterns for electric energy and capacity that were used for the energy efficiency program cost effectiveness purposes. For energy, the summer period May through September was selected based on the pattern of avoided costs for energy at the PJM level. In order to keep the complexity of the process for calculating energy savings' benefits to a reasonable level by using two time periods, the knee periods for spring and fall were split approximately evenly between the summer and winter periods.

For capacity, the summer period June through September was selected to match the period of time required to measure the 100 highest hours of demand. This period also correlates with the highest avoided costs' time period for capacity. The experience in PJM has been that nearly all of the 100 highest hours of an EDC's peak demand occur during these four months. Coincidence factors are used to determine the impact of energy efficiency measures on peak demand.

1.10 Post-Implementation Review

The Administrator will review AEPS application forms and tracking systems for all measures and conduct field inspections on a sample of installations. For some programs and projects (e.g., custom, large process, large and complex comprehensive design), post-installation review and on-site verification of a sample of AEPS application forms and installations will be used to ensure the reliability of site-specific savings' estimates.

1.11.1 Coincidence with Electric System Peak

Coincidence factors are used to reflect the portion of the connected load savings or generation that is coincident with the top 100 hours.

1.11.2 Measure Retention and Persistence of Savings

The combined effect of measure retention and persistence is the ability of installed measures to maintain the initial level of energy savings or generation over the measure life. Measure retention and persistence effects were accounted for in the metered data that were based on C&I installations over an eight-year period. As a result, some algorithms incorporate retention and persistence effects in the other input values. For other measures, if the measure is subject to a reduction in savings or generation over time, the reduction in retention or persistence is accounted for using factors in the calculation of resource savings (e.g., in-service rates for residential lighting measures).

1.11.3 Interactive Measure Energy Savings

Interaction of energy savings is accounted for specific measures as appropriate. For all other measures, interaction of energy savings is zero.

For Residential New Construction, the interaction of energy savings is accounted for in the home energy rating tool that compares the efficient building to the baseline or reference building and calculates savings.

For Commercial and Industrial (C&I) lighting, the energy savings is increased by an amount specified in the algorithm to account for HVAC interaction.

For C&I custom measures, interaction is accounted for in the site-specific analysis where relevant.

1.11.4 Verified Gross Adjustments

Evaluation activities at a basic level consist of verification of the installation and operation of measures. In many cases, the number of widgets found on-site may differ from the number stated on the application, which represents the number of widgets paid for by the program. When the number of widgets found on-site is less than what is stated on the application, the savings will be adjusted by a realization rate. For example, if an application states 100 widgets but an on-site inspection only finds 85, the realization rate applied is 85% (assuming no other discrepancies). On-site widget counts within 5% of the application numbers can be considered to be within reasonable error without requiring realization rate adjustment.

On the other hand, if the number of widgets found on-site is more than what is stated on the application, the savings will be capped at the application findings. For example, if an application states 100 widgets but an on-site inspection finds 120, the realization rate applied is 100% (assuming no other discrepancies).

1.12 Calculation of the Value of Resource Savings

The calculation of the value of the resources saved is not part of the TRM. The TRM is limited to the determination of the per unit resource savings in physical terms at the customer meter.

In order to calculate the value of the energy savings for reporting cost-benefit analyses and other purposes, the energy savings are determined at the customer level and then increased by the amount of the transmission and distribution losses to reflect the energy savings at the system level. The energy savings at the system level are then multiplied by the appropriate avoided costs to calculate the value of the benefits.

System Savings = (Savings at Customer) X (T&D Loss Factor)

 $Value \ of \ Resource \ Savings = (System \ Savings) \ X \ (System \ Avoided \ Costs) + (Value \ of \ Savings)$

Other Resource Savings)

The value of the benefits for a particular measure will also include other resource savings where appropriate. Maintenance savings will be estimated in annual dollars levelized over the life of the measure. The details of this methodology are subject to change by the 2011 TRC Order.

1.13 Transmission and Distribution System Losses

The TRM calculates the energy savings at the customer meter level. These savings need to be increased by the amount of transmission and distribution system losses in order to determine the energy savings at the system level, which is required for value of resource calculations. The electric loss factor multiplied by the savings calculated from the algorithms will result in savings at the system level.

The electric loss factor applied to savings at the customer meter is 1.11 for both energy and demand³. The electric system loss factor was developed to be applicable to statewide programs. Therefore, average system losses at the margin based on PJM data were utilized. This reflects a mix of different losses that occur related to delivery at different voltage levels. The 1.11 factor used for both energy and capacity is a weighted average loss factor. These electric loss factors reflect losses at the margin.

1.14 Measure Lives

Measure lives are provided in Appendix A for informational purposes and for use in other applications such as reporting lifetime savings or in benefit cost studies that span more than one year. For the purpose of calculating the Total Resource Cost (TRC) Test for Act 129, measures cannot claim savings for more than 15 years.

In general, avoided cost savings for programs where measures replace units before the end of their useful life are measured from the efficient unit versus the replaced unit for the remaining life of the existing unit, then from the efficient unit versus a new standard unit for the remaining efficient measure's life. Specific guidance will be provided through the 2011 TRC Order.

³ The 1.11 factor is to be used for the AEPS portfolio and is not binding for the purpose of cost-effectiveness calculations or coincident peak demand savings calculations for Act 129.

1.15 Custom Measures

Custom measures are considered too complex or unique to be included in the list of standard measures provided in the TRM. Also included are measures that may involve metered data, but require additional assumptions to arrive at a 'typical' level of savings as opposed to an exact measurement. To quantify savings for custom measures, a custom measure protocol must be followed. The qualification for and availability of AEPS Credits and energy efficiency and demand response savings are determined on a case-by-case basis.

An AEPS application must be submitted, containing adequate documentation fully describing the energy efficiency measures installed or proposed and an explanation of how the installed facilities qualify for AECs. The AEPS application must include a proposed evaluation plan by which the Administrator may evaluate the effectiveness of the energy efficiency measures provided by the installed facilities. All assumptions should be identified, explained and supported by documentation, where possible. The applicant may propose incorporating tracking and evaluation measures using existing data streams currently in use provided that they permit the Administrator to evaluate the program using the reported data.

To the extent possible, the energy efficiency measures identified in the AEPS application should be verified by the meter readings submitted to the Administrator.

For further discussion, please see <u>Appendix B</u>: <u>Relationship between Program Savings and Evaluation Savings Appendix B</u>.

1.16 Impact of Weather

-To account for weather differences within Pennsylvania, Equivalent Full Load Hours (ELFH) were taken from the US Department of Energy's ENERGY STAR Calculator⁴ that provides ELFH values for seven Pennsylvania cities: Allentown, Erie, Harrisburg, Philadelphia, Pittsburgh, Scranton, and Williamsport. These reference cities provide a representative sample of the various climate and utility regions in Pennsylvania. Pennsylvania zip codes are mapped to a reference city and shown in Appendix G: Zip Code MappingAppendix GAppendix FAppendix F:-Zip Code Mapping. In general, zip codes were mapped to the closest reference city because the majority of the state resides in ASHRAE climate zone 5. However, Philadelphia and a small area southwest of Harrisburg are assigned to ASHRAE climate zone 4. Therefore, any zip code in ASHRAE climate zone 4 were manually assigned to Philadelphia, regardless of distance.

In addition, several protocols rely on the work and analysis completed in California, where savings values are adjusted for climate. There are sixteen California climate zones. Each of the seven reference cities are mapped to a California climate zone as shown in Table 1-2: California CZ Mapping Table Table 1-2 Table 1-2 based on comparable number of cooling degree days and average dry bulb temperatures. Any weather dependent protocol using California-based models will follow this mapping table.

SECTION 1: Introduction

Custom Measures Page 9

⁴ http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls

Table 1-2: California CZ Mapping Table

Reference City	California Climate Zone
Allentown	4
Erie	6
Harrisburg	8
Philadelphia	13
Pittsburgh	4
Scranton	16
Williamsport	4

1.17 Measure Applicability Based on Sector

Protocols for the residential sector quantify savings for measures typically found in residential areas under residential meters. Likewise, protocols for the C&I sector quantify savings for measures typically found in C&I areas under C&I meters. However, there is some overlap where measure type, usage and the sector do not match.

Protocols in the residential and C&I sections describe measure savings based on the application or usage characteristics of the measure rather than how the measure is metered. For example, if a measure is found in a residential environment but is metered under a commercial meter, the residential sector protocol is used. On the other hand, if a measure is found in a commercial environment but is metered under a residential meter, the commercial sector protocol is used. This is particularly relevant for residential appliances that frequently appear in small commercial spaces (commercial protocol) and residential appliances that are used in residential settings but are under commercial meters (multi-family residences).

1.18 **Algorithms for Energy Efficient Measures**

The following sections present measure-specific algorithms. Section 2 addresses residential sector measures and Section 3 addresses commercial and industrial sector measures.

Section 4 addresses demand response measures for both residential and commercial and industrial measures.

2 RESIDENTIAL MEASURES

The following section of the TRM contains savings protocols for residential measures.

2.1 Electric HVAC

The method for determining residential high-efficiency cooling and heating equipment energy impact savings is based on algorithms that determine a central air conditioner or heat pump's cooling/heating energy use and peak demand contribution. Input data is based both on fixed assumptions and data supplied from the high efficiency equipment AEPS application form or EDC data gathering.

The algorithms applicable for this program measure the energy savings directly related to the more efficient hardware installation.

Larger commercial air conditioning and heat pump applications are dealt with in <u>Section</u> 3.6Section 3.6.

2.1.1 Algorithms

Central A/C and Air Source Heat Pump (ASHP) (High Efficiency Equipment Only)

This algorithm is used for the installation of new high efficiency A/C and ASHP equipment.

 $\Delta kWh_{cool} = \Delta kWh_{cool} + \Delta kWh_{heat}$ $= CAPY_{cool}/1000 X (1/SEER_b - 1/SEER_e) X EFLH_{cool}$ $\Delta kWh_{heat} (ASHP Only) = CAPY_{heat}/1000 X (1/HSPF_b - 1/HSPF_e) X EFLH_{heat}$ $\Delta kW_{peak} = CAPY_{cool}/1000 X (1/EER_b - 1/EER_e) X CF$ $Central A/C (Proper Sizing^5)$ $\Delta kWh = (CAPY_{cool}/(SEER_a X 1000)) X EFLH_{cool} X PSF$ $\Delta kW_{peak} = ((CAPY_{cool}/(EER_a X 1000)) X CF) X PSF$

Central A/C and ASHP (Maintenance)

This algorithm is used for measures providing services to maintain, service or tune-up central A/C and ASHP units.

Central A/C and ASHP (Duct Sealing)

This algorithm is used for measures that improve duct systems by reducing air leakage.

 ΔkWh = $\Delta kWh_{cool} + \Delta kWh_{heat}$

SECTION 2: Residential Measures

⁵ Proper sizing requires Manual J calculations, following of ENERGY STAR QI procedures, or similar calculations.

 ΔkWh_{cool} = (CAPY_{cool}/(1000 X SEER_e)) X EFLH_{cool} X DuctSF

 $\triangle kWh_{heat}$ (ASHP Only) = (CAPY_{heat}/(1000 X HSPF_e)) X EFLH_{heat} X DuctSF

 $\triangle kW_{\text{peak}}$ = $((CAPY_{\text{coo}}/(1000 \times EER_{\text{e}})) \times CF) \times DuctSF$

Ground Source Heat Pumps (GSHP)

This algorithm is used for the installation of new GSHP units. For GSHP systems over 65,000 BTUh, see commercial algorithm stated in Section 3.6.1.

 ΔkWh = $\Delta kWh_{cool} + \Delta kWh_{heat}$

 ΔkWh_{cool} = CAPY_{cool}/1000 X (1/SEER_b – (1/(EER_g X GSER))) X EFLH_{cool}

 ΔkWh_{heat} = CAPY_{heat}/1000 X (1/HSPF_b - (1/(COP_g X GSOP))) X EFLH_{heat}

 $\triangle kW$ = CAPY_{coo}/1000 X (1/EER_b – (1/(EER_g X GSPK))) X CF

GSHP Desuperheater

This algorithm is used for the installation of a desuperheater for a GSHP unit.

 ΔkWh = EDSH

 $\Delta kW = PDSH$

Furnace High Efficiency Fan

This algorithm is used for the installation of new high efficiency furnace fans.

 $\triangle kWh_{heat}$ = HFS

 ΔkWh_{cool} = CFS

 ΔkW_{peak} = PDFS

2.1.2 Definition of Terms

 $CAPY_{cool}$ = The cooling capacity (output in Btuh) of the central air

conditioner or heat pump being installed. This data is obtained from the AEPS Application Form based on the model number or

from EDC data gathering.

 $CAPY_{heat}$ = The heating capacity (output in Btuh) of the central air

conditioner or heat pump being installed. This data is obtained from the AEPS Application Form based on the model number or

from EDC data gathering

 $SEER_b$ = Seasonal Energy Efficiency Ratio of the Baseline Unit.

SECTION 2: Residential Measures

SEER _e	= Seasonal Energy Efficiency Ratio of the qualifying unit being installed. This data is obtained from the AEPS Application Form or EDC's data gathering based on the model number.
SEER _m	= Seasonal Energy Efficiency Ratio of the Unit receiving maintenance
EER _b	= Energy Efficiency Ratio of the Baseline Unit.
EER _e	= Energy Efficiency Ratio of the unit being installed. This data is obtained from the AEPS Application Form or EDC data gathering based on the model number.
EER_{g}	= EER of the ground source heat pump being installed. Note that EERs of GSHPs are measured differently than EERs of air source heat pumps (focusing on entering water temperatures rather than ambient air temperatures). The equivalent SEER of a GSHP can be estimated by multiplying EERg by 1.02.
GSER	= Factor used to determine the SEER of a GSHP based on its EERg.
EFLH _{cool}	= Equivalent Full Load Hours of operation during the cooling season for the average unit.
EFLH _{heat}	= Equivalent Full Load Hours of operation during the heating season for the average unit.
ESF <u>PSF</u>	= Energy-Proper Sizing Factor or the assumed saving due to proper sizing and proper installation.
MF _{cool}	= Maintenance Factor or assumed savings due to completing recommended maintenance on installed cooling equipment.
MF _{heat}	= Maintenance Factor or assumed savings due to completing recommended maintenance on installed heating equipment.
DuctSF	= Duct Sealing Factor or the assumed savings due to proper sealing of all cooling ducts.
CF	=Demand Coincidence Factor (See Section 1.4)
DSF	= Demand Sizing Factor or the assumed peak-demand capacity saved due to proper sizing and proper installation.
HSPF♭	= Heating Seasonal Performance Factor of the Baseline Unit.
HSPF _e	 Heating Seasonal Performance Factor of the unit being installed. This data is obtained from the AEPS Application Form or EDC's data gathering.

SECTION 2: Residential Measures

COP_g	= Coefficient of Performance. This is a measure of the efficiency of a heat pump.
GSOP	= Factor to determine the HSPF of a GSHP based on its COPg.
GSPK	= Factor to convert EERg to the equivalent EER of an air conditioner to enable comparisons to the baseline unit.
EDSH	= Assumed savings per desuperheater. ⁶
PDSH	= Assumed peak-demand savings per desuperheater.
HSF	= Assumed heating season savings per furnace high efficiency fan
CFS	= Assumed cooling season savings per furnace high efficiency fan
PDFS	= Assumed peak-demand savings per furnace high efficiency fan
1000	= Conversion from watts to kilowatts.

Table 2-1: Residential Electric HVAC - References

Component	Туре	Value	Sources
CAPY _{cool} CAPY _{heat}	Variable	EDC Data Gathering	AEPS Application; EDC Data Gathering
SEER _b	Fixed	Replace on Burnout: 13 SEER	1
OLLIV ₀	Variable	Early Retirement: EDC Data Gathering	EDC Data Gathering
SEERe	Variable	EDC Data Gathering	AEPS Application; EDC Data Gathering
SEER _m	Fixed	10	14 <u>13</u>
EER,	Fixed	Replace on Burnout: 11.3	2
LLIND	Variable	Early Retirement: EDC Data Gathering	EDC Data Gathering
EERe	Fixed	(11.3/13) X SEER _e	2
EERg	Variable	EDC Data Gathering	AEPS Application; EDC's Data Gathering
EERm	Fixed	8.69	15 14
GSER	Fixed	1.02	3

SECTION 2: Residential Measures

⁶ GSHP desuperheaters are generally small, auxiliary heat exchangers that uses superheated gases from the GSHP's compressor to heat water. This hot water then circulates through a pipe to the home's storage water heater tank.

Component	Туре	Value	Sources
EFLH _{cool}	Fixed Default Optional	Allentown Cooling = 487784 Hours Erie Cooling = 389482 Hours Harrisburg Cooling = 551929 Hours Philadelphia Cooling = 5911,032 Hours Pittsburgh Cooling = 737 432 Hours Scranton Cooling = 621 417 Hours Williamsport Cooling = 659 422 Hours An EDC can estimate it's own EFLH	4 EDC Data Gathering
EFLH _{heat}	<u>Default</u> Fixed	based on customer billing data analysis. Allentown Heating = $\frac{1,193}{2,492}$ -Hours Erie Heating = $\frac{1,349}{2,901}$ -Hours Harrisburg Heating = $\frac{1,103}{2,371}$ -Hours Philadelphia Heating = $\frac{1,060}{2,328}$ -Hours Pittsburgh Heating = $\frac{1,209}{2,380}$ -Hours Scranton Heating = $\frac{1,296}{2,532}$ -Hours Williamsport Heating = $\frac{1,251}{2,502}$ -Hours	4
	<u>Optional</u>	An EDC can estimate it's own EFLH based on customer billing data analysis.	EDC Data Gathering
ESF <u>PSF</u>	Fixed	<u>52.9</u> %	5
MF _{cool}	Fixed	10%	<u>15</u> 16
MF _{heat}	Fixed	10%	<u>15</u> 16
DuctSF	Fixed	18%	<u>12</u> 13
CF	Fixed	70%	6
DSF	Fixed	2.9%	7
Hebr	Fixed	Replace on Burnout: 7.7	<u>7</u> 8
HSPF _b	Variable	Early Retirement: EDC Data Gathering	EDC Data Gathering
HSPF _e	Variable	EDC Data Gathering	AEPS Application; EDC's Data Gathering
COP_g	Variable	EDC Data Gathering	AEPS Application; EDC's Data Gathering
GSOP	Fixed	3.413	<u>8</u> 9
GSPK	Fixed	0.8416	<u>910</u>
EDSH	Fixed	1842 kWh	<u>10</u> 11
PDSH	Fixed	0.34 kW	<u>11</u> 12
HFS	Fixed	311 kWh	<u>16</u> 17

SECTION 2: Residential Measures

- Rev Date: June 20122013 (DRAFT)

Component	Туре	Value	Sources
CFS	Fixed	135 kWh	<u>17</u> 18
PDFS	Fixed	0.114 kW	<u>18</u> 19

Sources:

- 1. Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.
- 2. Average EER for SEER 13 units.
- 3. VEIC estimate. Extrapolation of manufacturer data.
- 4. Based on REM/Rate modeling using models from the PA 2012 Potential Study. EFLH calculated from kWh consumption for cooling and heating. Models assume 50% oversizing of air conditioners7 and 40% oversizing of heat pumps.8

- 4. US Department of Energy, ENERGY STAR Calculator. Accessed 3/16/2009.
- 5. Northeast Energy Efficiency Partnerships, Inc., "Strategies to Increase Residential HVAC Efficiency in the Northeast", (February 2006): Appendix C Benefits of HVAC Contractor Training: Field Research Results 03-STAC-01, page 46.
- 5. Xenergy, "New Jersey Residential HVAC Baseline Study", (Xenergy, Washington, D.C., November 16, 2001).
- 6. Based on an analysis of six different utilities by Proctor Engineering.
- 7. Xenergy, "New Jersey Residential HVAC Baseline Study", (Xenergy, Washington, D.C., November 16, 2001).
- 8. Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.
- 9. Engineering calculation, HSPF/COP=3.413.
- 10. VEIC Estimate. Extrapolation of manufacturer data.
- 11. VEIC estimate, based on PEPCO assumptions.
- 12. VEIC estimate, based on PEPCO assumptions.
- 13. Northeast Energy Efficiency Partnerships, Inc., "Benefits of HVAC Contractor Training", (February 2006): Appendix C Benefits of HVAC Contractor Training: Field Research Results 03-STAC-01.
- 14. Minimum Federal Standard for new Central Air Conditioners between 1990 and 2006.

SECTION 2: Residential Measures

Electric HVAC

Neme, Proctor, Nadal, "National Energy Savings Potential From Addressing Residential HVAC Installation Problems. ACEEE, February 1, 1999. Confirmed also by Central Air Conditioning in Wisconsin, a compilation of recent field research. Energy Center of Wisconsin. May 2008, emended December 15, 2010

⁸ ACCA, "Verifying ACCA Manual S Procedures," http://www.acca.org/Files/?id=67.

- 15. The same EER to SEER ratio used for SEER 13 units applied to SEER 10 units. EERm = (11.3/13) * 10.
- VEIC estimate. Conservatively assumes less savings than for QIV because of the retrofit context.
- 17. Scott Pigg (Energy Center of Wisconsin), "Electricity Use by New Furnaces: A Wisconsin Field Study", Technical Report 230-1, October 2003, page 20. The average heating-mode savings of 400 kWh multiplied by the ratio of average heating degree days in PA compared to Madison, WI (5568/7172).
- 18. Ibid, page 34. The average cooling-mode savings of 88 kWh multiplied by the ratio of average EFLH in PA compared to Madison, WI (749/487).
- 19. Ibid, page 34. The average kW savings of 0.1625 multiplied by the coincidence factor from Table 2-1.

2.2 Electric Clothes Dryer with Moisture Sensor

Measure Name	Electric Clothes Dryer with Moisture Sensor
Target Sector	Residential Establishments
Measure Unit	Clothes Dryer
Unit Energy Savings	136 kWh
Unit Peak Demand Reduction	0.047 kW
Measure Life	11 years

Clothes dryers with drum moisture sensors and associated moisture-sensing controls achieve energy savings over clothes dryers that do not have moisture sensors.

2.2.1 Eligibility

This measure requires the purchase of an electric clothes dryer with a drum moisture sensor and associated moisture-sensing controls. ENERGY STAR currently does not rate or certify electric clothes dryers.

The TRM does not provide energy and demand savings for electric clothes dryers. The following sections detail how this measure's energy and demand savings were determined.

2.2.2 Algorithms

Energy Savings

The annual energy savings of this measure was determined to be **136 kWh**. This value was based on the difference between the annual estimated consumption of a standard unit without a moisture sensor as compared to a standard unit with a moisture sensor. This calculation is shown below:

$$\Delta kWh$$
 = 905 - 769 = 136 kWh

The annual consumption of a standard unit without a moisture sensor (905 kWh) was based on 2008 estimates from Natural Resources Canada.⁹

The annual consumption of a standard unit with a moisture sensor (769 kWh) was based on estimates from EPRI¹⁰ and the Consumer Energy Center¹¹ that units equipped with moisture sensors (and energy efficient motors, EPRI) are about 15% more efficient than units without.

$$\Delta kWh$$
 = 905 - (905 * 0.15) = 769 kWh

Demand Savings

The demand savings of this measure was determined to be 0.346 kW. This value was based on the estimated energy savings divided by the estimated of annual hours of use. The estimated of

⁹ Natural Resources Canada Report.pdf

¹⁰ EPRI Electric Clothes Dryer Report.pdf

¹¹ Natural Living Guide.pdf

annual hours of use was based on 392¹² loads per year with a 1 hour dry cycle. This calculation is shown below:

$$\Delta kW = 136/392 = 0.346 \, kW$$

The demand coincidence factor of this measure was determined to be **0.136**. This value was based on the assumption that 5 of 7 loads are run on peak days, 5 of 7 days the peak can occur on, 1.07 loads per day (7.5 per week, Reference #4), 45 minutes loads, and 3 available daily peak hours. This calculation is shown below:

CF =
$$(5/7) * (5/7) * (1.07) * (0.75) * (1/3) = 0.136$$

The resulting demand savings based on this coincidence factor was determined to be **0.047 kW**. This calculation is shown below:

$$\Delta kW_{peak}$$
 = 0.346 * 0.136 = 0.047 kW

The assumptions used to determine this measure's net demand value are listed below:

On-peak Annual Hours of Operation Assumption = 66.2% (May 2009 TRM)

Summer Annual Hours of Operation Assumption = 37.3% (May 2009 TRM)

2.2.3 Measure Life

We have assumed the measure life to be that of a clothes washer. The Database for Energy Efficiency Resources estimates the measure life of clothes washers at 11 years. 13

2.2.4 Evaluation Protocol

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

¹² Energy Star Clothes Washer Calculator Assumptions.pdf

¹³ DEER EUL values, updated October 10, 2008

2.3 Efficient Electric Water Heaters

Measure Name	Efficient Electric Water Heaters
Target Sector	Residential Establishments
Measure Unit	Water Heater
Unit Energy Savings	89_115 kWh for 0.93 Energy Factor 122_157 kWh for 0.94 Energy Factor 154_199 kWh for 0.95 Energy Factor
Unit Peak Demand Reduction	0.0082 0.0105 kW for 0.93 Energy Factor 0.0112 0.0144 kW for 0.94 Energy Factor 0.0142 0.0182 kW for 0.95 Energy Factor
Measure Life	14 years

Efficient electric water heaters utilize superior insulation to achieve energy factors of 0.93 or above. Standard electric water heaters have energy factors of 0.904.

2.3.1 Eligibility

This protocol documents the energy savings attributed to electric water heaters with Energy Factor of 0.93 or greater. The target sector primarily consists of single-family residences.

2.3.2 Algorithms

The energy savings calculation utilizes average performance data for available residential efficient and standard water heaters and typical water usage for residential homes. The energy savings are obtained through the following formula:

$$\angle AkWh = \frac{\left\{ \left(\frac{1}{EF_{Base}} - \frac{1}{EF_{Proposed}} \right) \times \left(HW \times 365 \times 8.3 \frac{lb}{gal} \times (T_{hot} - T_{cold}) \right) \right\}}{3413 \frac{Btu}{kWh}}$$

Demand savings result from reduced hours of operation of the heating element, rather than a reduced connected load. The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage.

$$\Delta kW_{peak}$$
 = EnergyToDemandFactor × Energy Savings

The Energy to Demand Factor is defined below:

$$EnergyToDemandFactor = \frac{Average\ Usage_{Summer\ WD\ Noon-8}}{Annual\ Energy\ Usage}$$

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from load shape data collected for a water heater and HVAC demand response study for PJM¹⁴. The factor is constructed as follows:

- 1) Obtain the average kW, as monitored for 82 water heaters in PJM territory¹⁵, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, 183 spring/fall days) to obtain annual energy usage.
- 2) Obtain the average kW during noon to 8 PM on summer days from the same data.
- 3) The average noon to 8 PM demand is converted to average *weekday* noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study¹⁶.
- 4) The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the *EnergyToDemandFactor*.

The load shapes (fractions of annual energy usage that occur within each hour) during summer week days are plotted in Figure 2-1 below.

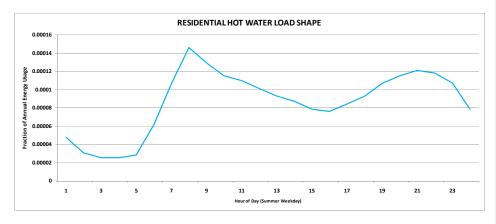


Figure 2-1: Load shapes for hot water in residential buildings taken from a PJM study.

 ¹⁴ Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/working-groups/lrwq/20070301/20070301-pjm-deemed-savings-report.ashx
 15 The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken

The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taker from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32

¹⁶ The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer *weekday* usage. The conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays.

2.3.3 Definition of Terms

The parameters in the above equation are listed in Table 2-2 below.

Table 2-2: Efficient Electric Water Heater Calculation Assumptions

Component	Туре	Values	Source
EF _{base} , Energy Factor of baseline water heater	Fixed	0.904	1
EF _{proposed} , Energy Factor of proposed efficient water heater	Variable	>=0.93	Program Design
HW , Hot water used per day in gallons	Fixed	50 64.3 gallon/day	2
T _{hot} , Temperature of hot water	Fixed	120 °F	3
T _{cold} , Temperature of cold water supply	Fixed	55 °F	4
Energy To Demand Factor	Fixed	0.00009172	1-4

Sources:

- Federal Standards are 0.97 -0.00132 x Rated Storage in Gallons. For a 50-gallon tank this is 0.904. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE–2006–BT-STD–0129, p. 30
- 2. Energy Conservation Program for Consumer Products: Test Procedure for Water Heaters", Federal Register / Vol. 63, No. 90, pp. 26005-26006.p. 25996
- 3. Many states have plumbing codes that limit shower and bathtub water temperature to $120~{}^{\circ}\text{F}$.
- 4. Mid-Atlantic TRM, footnote #24

2.3.4 Deemed Savings

The deemed savings for the installation of efficient electric water heaters with various Energy Factors are listed below.

Table 2-3: Energy Savings and Demand Reductions

Energy Factor	Energy Savings (kWh)	Demand Reduction (kW)	
0.95	<u>154</u> 199	<u>0.0082</u> - 0.0182	
0.94	<u>122</u> 157	<u>0.0112</u> 0.0144	
0.93	<u>89</u> <u>115</u>	<u>0.0142</u> 0.0182	

2.3.5 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources, an electric water heater's lifespan is $\bf 14~years^{17}$

2.3.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

¹⁷ DEER values, updated October 10, 2008 http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

2.4 Electroluminescent Nightlight

Measure Name	Electroluminescent Nightlight
Target Sector	Residential Establishments
Measure Unit	Nightlight
Unit Energy Savings	26 kWh
Unit Peak Demand Reduction	0 kW
Measure Life	8 years

Savings from installation of plug-in electroluminescent nightlights are based on a straightforward algorithm that calculates the difference between existing and new wattage and the average daily hours of usage for the lighting unit being replaced. An "installation" rate is used to modify the savings based upon the outcome of participant surveys, which will inform the calculation. Demand savings is assumed to be zero for this measure.

2.4.1 Algorithms

The general form of the equation for the electroluminescent nightlight energy savings algorithm is:

 $\triangle kWh$ = $((W_{inc} * h_{inc}) - (WNL * h_{NL})) * 365 / 1000 * ISRNL$

 ΔkW_{peak} = 0 (assumed)

Deemed Energy Savings = ((7*12)-(0.03*24))*365/1000*0.84 = 25.53 kWh

(Rounded to 26 kWh)

2.4.2 Definition of Terms

 W_{NL} = Watts per electroluminescent nightlight

W_{inc} = Watts per incandescent nightlight

 h_{NL} = Average hours of use per day per electroluminescent nightlight

 h_{inc} = Average hours of use per day per incandescent nightlight

 ISR_{NL} = In-service rate per electroluminescent nightlight, to be revised

through surveys

Table 2-4: Electroluminescent Nightlight - References

Component	Туре	Value	Sources	
W _{NL}	Fixed	0.03	1	
Winc	Fixed	7	2	
h _{NL}	Fixed	24	3	
h _{inc}	Fixed	12	2	
ISR _{NL}	Variable	0.84	PA CFL ISR value	
Measure Life (EUL)	Fixed	8	4	

Sources:

- Limelite Equipment Specification. Personal Communication, Ralph Ruffin, El Products, 512-357-2776/ ralph@limelite.com.
- 2. Southern California Edison Company, "LED, Electroluminescent & Fluorescent Night Lights", Work Paper WPSCRELG0029 Rev. 1, February 2009, p. 2 & p. 3.
- 3. As these nightlights are plugged in without a switch, the assumption is they will operate 24 hours per day.
- 4. Southern California Edison Company, "LED, Electroluminescent & Fluorescent Night Lights", Work Paper WPSCRELG0029 Rev. 1, February 2009, p. 2 & p. 3.

2.5 Furnace Whistle

Measure Name	Furnace Whistle
Target Sector	Residential Establishments
Measure Unit	Furnace whistle (promote regular filter change-out)
Unit Energy Savings	Varies
Unit Peak Demand Reduction	0 kW
Measure Life	15 years

Savings estimates are based on reduced furnace blower fan motor power requirements for winter and summer use of the blower fan motor. This furnace whistle measure applies to central forced-air furnaces, central AC and heat pump systems. Each table in this protocol (2 through 6) presents the annual kWh savings for each major urban center in Pennsylvania based on their respective estimated full load hours (EFLH). Where homes do not have A/C or heat pump systems for cooling, only the annual heating savings will apply.

2.5.1 Algorithms

 ΔkWh = MkW X EFLH X EI X ISR

 $\Delta kW_{peak} = 0$

2.5.2 Definition of Terms

MkW = Average motor full load electric demand (kW)

EFLH = Estimated Full Load Hours (Heating and Cooling) for the EDC

region.

EI = Efficiency Improvement

ISR = In-service Rate

Table 2-5: Furnace Whistle - References

Component	Туре	Value	Sources
MkW	Fixed	0.5 kW	1, 2
EFLH	Fixed	Variable. See Table 2-6: EFLH for various cities in Pennsylvania (TRM Data)Table 2-6.3117	TRM Table 2-1: Residential Electric HVAC - ReferencesTable 2-1Table 2-1
El	Fixed	15%	3
ISR	Fixed	0.474	4
Measure EUL	Fixed	15	15

SECTION 2: Residential Measures

Furnace Whistle Page 27

Sources:

- 1. The Sheltair Group HIGH EFFICIENCY FURNACE BLOWER MOTORS MARKET BASELINE ASSESSMENT provided BC Hydro cites Wisconsin Department of Energy [2003] analysis of electricity use from furnaces (see Blower Motor Furnace Study). The Blower Motor Study Table 17 (page 38) shows 505 Watts for PSC motors in space heat mode; last sentence of the second paragraph on page 38 states: " . . . multi-speed and single speed furnaces motors drew between 400 and 800 Watts, with 500 being the average value."Submitted to: Fred Liebich BC Hydro Tel. 604 453-6558 Email: fred.liebich@bchydro.com, March 31, 2004.
 - 500 watts (.5 kW) times Pittsburgh heating and cooling FLH of 2.078 3117 = 1.039 1,558.5 kWh (we would expect Pittsburgh to have greater heating loads than the US generally, as referred to by the ACEEE through the Appliance Standards Awareness Project "Furnace fan systems blow warmed air through a home, using approximately 1,000 kilowatt hours of electricity per year . . . An estimated 95% of all residential air handlers use relatively inefficient permanent split capacitor (PSC) fan motors."
- FSEC, "Furnace Blower Electricity: National and Regional Savings Potential", page 98 Figure 1 (assumptions provided in Table 2, page 97) for a blower motor applied in
 prototypical 3-Ton HVAC for both PSC and BPM motors, at external static pressure of 0.8
 in. w.g., blower motor Watt requirement is 452 Watts.
- 3. US DOE Office of Energy Efficiency and Renewable Energy "Energy Savers" publication "Clogged air filters will reduce system efficiency by 30% or more." Savings estimates assume the 30% quoted is the worst case and typical households will be at the median or 15% that is assumed to be the efficiency improvement when furnace filters are kept clean.
- 4. The In Service Rate is taken from an SCE Evaluation of 2000-2001 Schools Programs, by Ridge & Associates 8-31-2001, Table 5-19 Installation rates, Air Filter Alarm 47.4%.

Table 2-6: EFLH for various cities in Pennsylvania (TRM Data)

City	Cooling load hours	Heating load hours	Total load hours
Pittsburgh	<u>487</u> 737	<u>1,193</u> 2380	<u>1,681</u> 3117
Philadelphia	<u>389</u> 1032	<u>1,349</u> 2328	<u>1,739</u> 3360
Allentown	<u>551</u> 784	<u>1,103</u> 2492	<u>1,654</u> 3276
Erie	<u>591</u> 4 82	<u>1,060</u> 2901	<u>1,651</u> 3383
Scranton	<u>432</u> 621	<u>1,209</u> 2532	<u>1,641</u> 3153
Harrisburg	<u>417929</u>	<u>1,296</u> 2371	<u>1,713</u> 3300
Williamsport	<u>422</u> 659	<u>1,251</u> 2502	<u>1,673</u> 3161

Formatted Table

SECTION 2: Residential Measures

Furnace Whistle Page 2

The deemed savings are calculated assuming that an average furnace motor is 500 watts (.5 kW), using the Pittsburgh region as an example, furnace operating hours for Pittsburgh is 2380 hrs/year and cooling system operation is 737 hours/year. A 15% decrease in efficiency is attributed to the dirty furnace filters. The EFLH will depend on the EDC region in which the measure is installed.

Technical Reference Manual

Without including correction for in-service rates, the 15% estimated blower fan annual savings of 178.5 kWh is 2.2% of average customer annual energy consumption of 8,221 kWh. The following table presents the assumptions and the results of the deemed savings calculations for each EDC.

Table 2-7: Assumptions and Results of Deemed Savings Calculations (Pittsburgh, PA)

	Blower Motor kW	Pittsburgh EFLH	Clean Annual kWh	Dirty Annual kWh	Furnace Whistle Savings	ISR	Estimated Savings (kWh)
Heating	0.5	<u>1,209</u> 2380	<u>604</u> 1190	<u>695</u> 1368.5	<u>91</u> 178.5	0.4740.474	<u>43</u> 85
Cooling	0.5	<u>432</u> 737	<u>216</u> 369	<u>248</u> 424	<u>32</u> 55	0.4740.474	<u>15</u> 26
Total		<u>1,641</u> 3117	<u>820</u> 1559	<u>944</u> 1792	<u>123</u> 234	-	<u>58</u> 111

Table 2-8: Assumptions and Results of Deemed Savings Calculations (Philadelphia, PA)

	Blower Motor kW	Philadelphia EFLH	Clean Annual kWh	Dirty Annual kWh	Furnace Whistle Savings	ISR	Estimated Savings (kWh)
Heating	0.5	<u>1,060</u> 2328	<u>530</u> 1164	<u>609</u> 1339	<u>79</u> 175	0.4740.474	<u>38</u> 83
Cooling	0.5	<u>591</u> 1032	<u>296</u> 516	<u>340</u> 593	<u>44</u> 77	0.4740.474	<u>21</u> 37
Total		<u>1,651</u> 3360	<u>826</u> 1680	<u>949</u> 1932	<u>124252</u>	-	<u>59</u> 119

Table 2-9: Assumptions and Results of Deemed Savings Calculations (Harrisburg, PA)

	Blower Motor kW	Harrisburg EFLH	Clean Annual kWh	Dirty Annual kWh	Furnace Whistle Savings	ISR	Estimated Savings (kWh)
Heating	0.5	<u>1,103</u> 2371	<u>552</u> 1185.5	<u>634</u> 1363	<u>83</u> 178	0.4740.474	<u>39</u> 84
Cooling	0.5	<u>551</u> 929	<u>276</u> 465	<u>317</u> 534	<u>41</u> 70	0.4740.474	<u>20</u> 33
Total		<u>1,654</u> 3300	<u>827</u> 1650	<u>951</u> 1898	<u>124</u> 248	-	<u>59</u> 117

Formatted Table

Formatted Table

Formatted Table

Furnace Whistle

Table 2-10: Assumptions and Results of Deemed Savings Calculations (Erie, PA)

	Blower Motor kW	Erie EFLH	Clean Annual kWh	Dirty Annual kWh	Furnace Whistle Savings	ISR	Estimated Savings (kWh)
Heating	0.5	<u>1,349</u> 2901	<u>675</u> 1450.5	<u>776</u> 1668	<u>101</u> 217.5	0.4740.474	<u>48</u> 103
Cooling	0.5	<u>389</u> 482	<u>195</u> 241	<u>224</u> 277	<u>29</u> 36	0.4740.474	<u>14</u> 17
Total		<u>1,739</u> 3383	<u>869</u> 1692	<u>1,000</u> 1945	<u>130</u> 254	=	<u>62120</u>

Table 2-11: Assumptions and Results of Deemed Savings Calculations (Allentown, PA)

	Blower Motor kW	Allentown EFLH	Clean Annual kWh	Dirty Annual kWh	Furnace Whistle Savings	ISR	Estimated Savings (kWh)
Heating	0.5	<u>1,193</u> 2492	<u>597</u> 1246	<u>686</u> 1433	<u>89</u> 187	0.4740.474	<u>42</u> 89
Cooling	0.5	<u>487</u> 784	<u>244</u> 392	<u>280</u> 451	<u>37</u> 59	0.4740.474	<u>17</u> 28
Total		<u>1,681</u> 3276	<u>840</u> 1638	<u>966</u> 1884	<u>126</u> 246	-	<u>60</u> 116

Table 2-12: Assumptions and Results of Deemed Savings Calculations (Scranton, PA)

	Blower Motor kW	Scranton EFLH	Clean Annual kWh	Dirty Annual kWh	Furnace Whistle Savings	ISR	Estimated Savings (kWh)
Heating	<u>0.5</u>	<u>1,296</u>	<u>648</u>	<u>745</u>	<u>97</u>	0.474	<u>46</u>
Cooling	<u>0.5</u>	417	<u>208</u>	<u>240</u>	<u>31</u>	0.474	<u>15</u>
Total		<u>1,713</u>	<u>857</u>	<u>985</u>	<u>129</u>		<u>61</u>

Table 2-13: Assumptions and Results of Deemed Savings Calculations (Williamsport, PA)

	Blower Motor kW	Williamsport EFLH	Clean Annual kWh	Dirty Annual kWh	Furnace Whistle Savings	ISR	Estimated Savings (kWh)
Heating	<u>0.5</u>	<u>1,251</u>	<u>625</u>	<u>719</u>	<u>94</u>	0.474	<u>44</u>
Cooling	<u>0.5</u>	<u>422</u>	<u>211</u>	<u>243</u>	<u>32</u>	0.474	<u>15</u>
<u>Total</u>		<u>1,673</u>	<u>836</u>	<u>962</u>	<u>125</u>		<u>59</u>

Furnace Whistle Page 30

2.6 Heat Pump Water Heaters

Measure Name	Heat Pump Water Heaters
Target Sector	Residential Establishments
Measure Unit Water Heater	
Unit Energy Savings	1.698 2,184 kWh for 2.3 Energy Factor 1.474 1,896 kWh for 2.0 Energy Factor
Unit Peak Demand Reduction	0.156 0.200 kW for 2.3 Energy Factor 0.135 0.174 kW for 2.0 Energy Factor
Measure Life	14 years

Heat Pump Water Heaters take heat from the surrounding air and transfer it to the water in the tank, unlike conventional water heaters, which use either gas (or sometimes other fuels) burners or electric resistance heating coils to heat the water.

2.6.1 Eligibility

This protocol documents the energy savings attributed to heat pump water heaters with Energy Factors of 2.0 to 2.3. The target sector primarily consists of single-family residences.

2.6.2 Algorithms

The energy savings calculation utilizes average performance data for available residential heat pump and standard electric resistance water heaters and typical water usage for residential homes. The energy savings are obtained through the following formula:

$$\angle AkWh = \frac{\left\{ \left(\frac{1}{EF_{Base}} - \left(\frac{1}{EF_{Proposed}} \times \frac{1}{F_{Adjust}}\right)\right) \times HW \times 365 X 8.3 \frac{lb}{gal} X (Thot - Tcold) \right\}}{3413 \frac{Btu}{kWh}}$$

For heat pump water heaters, demand savings result primarily from a reduced connected load. The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage.

$$\Delta kW_{peak}$$
 = EnergyToDemandFactor × Energy Savings

The Energy to Demand Factor is defined below:

$$EnergyToDemandFactor = \frac{Average\ Usage}{Annual\ Energy\ Usage}$$

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from load shape data collected for a water heater and HVAC demand response study for PJM¹⁸. The factor is constructed as follows:

- 1. Obtain the average kW, as monitored for 82 water heaters in PJM territory¹⁹, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, and 183 spring/fall days) to obtain annual energy usage.
- 2. Obtain the average kW during noon to 8 PM on summer days from the same data.
- The average noon to 8 PM demand is converted to average weekday noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study²⁰.
- 4. The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the *EnergyToDemandFactor*.

The load shapes (fractions of annual energy usage that occur within each hour) during summer week days are plotted for three business types in Figure 2-2 below.

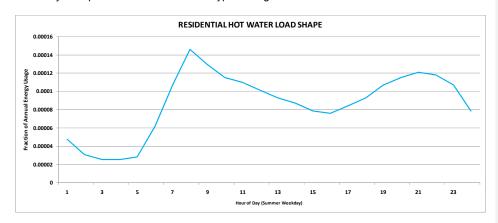


Figure 2-2: Load shapes for hot water in residential buildings taken from a PJM study.

¹⁸ Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/working-groups/lwg/20070301/20070301-pjm-deemed-savings-report.ashx
¹⁹The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken

[&]quot;The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32

²⁰ The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays

2.6.3 Definition of Terms

The parameters in the above equation are listed in Table 2-14Table 2-14Table 2-12.

Table 2-141412: Heat Pump Water Heater Calculation Assumptions

Component	Туре	Values	Source
EFbase , Energy Factor of baseline water heater	Fixed	0.904	4
EFproposed, Energy Factor of proposed efficient water heater	Variable	>=2.0	Program Design
HW , Hot water used per day in gallons	Fixed	50 64.3- gallon/day	5
Thot , Temperature of hot water	Fixed	120 °F	6
Tcold , Temperature of cold water supply	Fixed	55 °F	7
FDerate, COP De-rating factor	Fixed	0.84	8, and discussion below
EnergyToDemandFactor	Fixed	0.00009172	1-4

Sources:

- Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/workinggroups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx ,
- The average is over all 82 water heaters and over all summer, spring/fall, or winter days.
 The load shapes are taken from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32
- 3. The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays.
- Federal Standards are 0.97 -0.00132 x Rated Storage in Gallons. For a 50-gallon tank this is approximately 0.90. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE–2006–BT-STD–0129, p. 30
- "Energy Conservation Program for Consumer Products: Test Procedure for Water
 Heaters", Federal Register / Vol. 63, No. 90, p. 26005-26006" "Energy Conservation

 Program for Consumer Products: Test Procedure for Water Heaters", Federal Register / Vol. 63, No. 90, p. 25996. The temperatures are at 67.5 °F dry bulb and 50% RH, which is °F 67.5 wet bulb.
- 6. -Many states have plumbing codes that limit shower and bathtub water temperature to 120 $^{\circ}\text{F}$.

in literature.

- 7. -Mid-Atlantic TRM, footnote #24
- 8. The performance curve is adapted from Table 1 in http://wescorhvac.com/HPWH%20design%20details.htm#Single-stage%20HPWHs The performance curve depends on other factors, such as hot water set point. Our adjustment factor of 0.84 is a first order approximation based on the information available

2.6.4 Heat Pump Water Heater Energy Factor

The Energy Factors are determined from a DOE testing procedure that is carried out at 56 °F wet bulb temperature. However, the average wet bulb temperature in PA is closer to 45 °F²¹. The heat pump performance is temperature dependent. The plot below shows relative coefficient of performance (COP) compared to the COP at rated conditions²². According to the linear regression shown on the plot, the COP of a heat pump water heater at 45 °F is 0.84 of the COP at nominal rating conditions. As such, a de-rating factor of 0.84 is applied to the nominal Energy Factor of the Heat Pump water heaters.

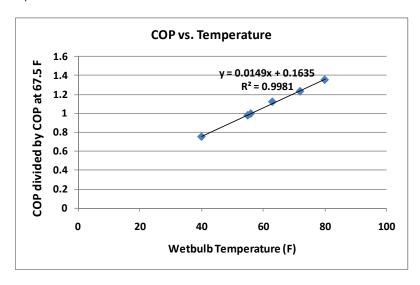


Figure 2-3: Dependence of COP on outdoor wet-bulb temperature.

²¹ Based on TMY2 weather files from DOE2.com for Erie, Harrisburg, Pittsburgh, Wilkes-Barre, And Williamsport, the average annual wetbulb temperature is 45 1.3 °F. The wetbulb temperature in garages or attics, where the heat pumps are likely to be installed, are likely to be two or three degrees higher, but for simplicity, 45 °F is assumed to be the annual average wetbulb temperature.

²² The performance curve is adapted from Table 1 in http://wescorhvac.com/HPWH%20design%20details.htm#Single-stane%20HPWHs

The performance curve depends on other factors, such as hot water set point. Our adjustment factor of 0.84 is a first order approximation based on the information available in literature.

2.6.5 Deemed Savings

The deemed savings for the installation of heat pump electric water heaters with various Energy Factors are listed below.

Table 2-151513: Energy Savings and Demand Reductions

Energy Factor	Energy Savings (kWh)	Demand Reduction (kW)
2.3	<u>1,698</u> 2184	<u>0.156</u> 0.200
2.0	<u>1,474</u> 1896	<u>0.135</u> 0.174

2.6.6 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources, an electric water heater's lifespan is **14 years**²³.

2.6.7 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

²³ DEER values, updated October 10, 2008 http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

2.7 Home Audit Conservation Kits

Measure Name	Home Audit Conservation Kits
Target Sector	Residential Establishments
Measure Unit	One Energy Conservation Kit
Unit Energy Savings	Variable based on ISR
Unit Peak Demand Reduction	Variable based on ISR
Measure Life	8.1 years

Energy Conservation kits consisting of four CFLs, four faucet aerators, two smart power strips and two LED night lights are sent to participants of the Home Energy Audit programs. This document quantifies the energy savings associated with the energy conservation kits.

2.7.1 Eligibility

The conservation kits are sent to residential customers only.

2.7.2 Algorithms

The following algorithms are adopted from the Pennsylvania Public Utilities Commission's Technical Reference Manual (TRM). The demand term has been modified to include the installation rate, which was inadvertently omitted in the TRM.

$$\Delta kWh = N_{CFL} \times ((CFL_{watts} \times (CFL_{hours} \times 365))/1000) \times ISR_{CFL} \\ + N_{Aerator} \times Savings_{Aerator} \times ISR_{Aerator} \\ + N_{SmartStrip} \times Savings_{SmartStrip} \times ISR_{SmartStrip} \\ + N_{NiteLites} \times Savings_{NiteLite} \times ISR_{NiteLite} \\ \Delta kW_{peak} = N_{CFL} \times (CFL_{watts}/1000) \times CF \times ISR_{CFL} \\ + N_{Aerator} \times DemandReduction_{Aerator} \times ISR_{Aerator} \\ + N_{SmartStrip} \times DemandReduction_{SmartStrip} \times ISR_{SmartStrip} \\ + N_{NiteLite} \times DemandReduction_{NiteLite} \times ISR_{NiteLite}$$

2.7.3 **Definition of Terms**

The parameters in the above equations are listed in <u>Table 2-16Table 2-16Table 2-14</u>.

Table 2-161614: Home Audit Conversion Kit Calculation Assumptions

Technical Reference Manual

Component	Value	Source
N _{CFL} : Number of CFLs per kit	4	Program design ²⁴
CFL _{Watts} , Difference between supplanted and efficient luminaire wattage (W) ²⁵	40 (2013 TRM) 27.3 (2014 TRM)47	Program Design
ISR , In Service Rate or Percentage of units rebated that actually get used	variable	EDC Data Gathering SWE Data Gathering
CFL _{hours} , hours of operation per day	2.83.0	PA TRM <u>Error! Reference</u> <u>source not found. Table 2-</u> <u>68 Table 2-68 Table 2-43</u>
CF , CFL Summer Demand Coincidence Factor	0.05	PA TRM <u>Table 2-68</u> Table 2-43
N _{Aerator} : Number of faucet aerators per kit	4	Program design
N _{SmartStrip} : Number of Smart Strips per kit	2	Program design
Savings _{Aerator} (kWh)	<u>44</u> 61	PA TRM – Section 2.9FE- Interim TRM
DemandReduction _{Aerator} (kW)	0.00400.006	PA TRM – Section 2.9FE- Interim TRM
ISR _{Aerator}	variable	EDC Data Gathering ²⁶
Savings _{SmartStrip} (kWh)	184	PA TRM – Section 2.9FE- Interim TRM
DemandReduction _{SmartStrip} (kW)	0.013	PA TRM – Section 2.9FE- Interim TRM
ISR _{SmartStrip}	variable	EDC Data Gathering
Savings _{NiteLite} (kWh)	26.3	PA Interim TRM ²⁷
DemandReduction _{NiteLite} (kW)	0	PA Interim TRM

²⁴ Four 23-W CFLs are sent out. We assume that one replaces a 100W lamp while the remaining CFLs replace 60W

²⁵ Adjusts for EISA 2007. 100 watt incandescent baseline is 72 watts as of 2013 TRM and 60 watt incandescent baseline

is 43 watts as of 2014 TRM. Reference Section2.30 for further information on EISA 2007.

The ISR calculation for aerators is averaged from observations of a binary variable that takes on value 1 if the aerator is installed and the home has electric water heating, 0 otherwise.

²⁷ The savings for night lights are 22.07 kWh in the PA Interim TRM, p. 24. However, these savings are the product of 26.3 kWh and an ISR of 0.84. Since the ISR for the conservation kit items are determined by data gathering during the impact evaluation, the savings for night lights herein are cast as 26.3 × ISR, with ISR as a program-specific empirically determined variable.

Component	Value	Source	
ISR _{NiteLite}	variable	EDC Data Gathering	
N _{NiteLite}	2	Program Design	

2.7.4 Partially Deemed Savings

The deemed energy and demand savings per kit are dependent on the measured ISRs for the individual kit components.

2.7.5 Measure Life

The measure life for CFLs is **6.4 years** according to ENERGY STAR²⁸. The measure life of the Smart Strips are **5 years**, and the measure life of the faucet aerators are **12 years**. The weighted (by energy savings) average life of the energy conservation kit is **8.1 years**.

2.7.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings. The fraction of cases where a given measure has supplanted the baseline equipment constitutes the ISR for the measure.

²⁸ Energy Star Appliances, Energy Star Lighting, and several Residential Electric HVAC measures lives updated February 2008. U.S. Environmental Protection Agency and U.S. Department of Energy, Energy Star. https://www.energystar.gov/.

2.8 **LED Nightlight**

Measure Name	LED Nightlight
Target Sector	Residential Establishments
Measure Unit	LED Nightlight
Unit Energy Savings	22 kWh
Unit Peak Demand Reduction	0 kW
Measure Life	8 years

Savings from installation of LED nightlights are based on a straightforward algorithm that calculates the difference between existing and new wattage and the average daily hours of usage for the lighting unit being replaced. An "installation" rate is used to modify the savings based upon the outcome of participant surveys, which will inform the calculation. Demand savings is assumed to be zero for this measure.

2.8.1 **Algorithms**

Assumes a 1 Watt LED nightlight replaces a 7 Watt incandescent nightlight. The nightlight is assumed to operate 12 hours per day, 365 days per year; estimated useful life is 8 years (manufacturer cites 11 years 100,000 hours). Savings are calculated using the following algorithm:

= ((NL_{watts} X (NL_{hours} X 365))/1000) x ISR ΔkWh

 ΔkW_{peak} = 0 (assumed)

2.8.2 **Definition of Terms**

NLwatts = Average delta watts per LED Nightlight

 NL_{hours} = Average hours of use per day per Nightlight

ISR = In-service rate

(The EDC EM&V contractors will reconcile the ISR through survey activities)

Table 2-171715: LED Nightlight - References

Component	Туре	Value	Sources
NL _{watts}	Fixed	6 Watts	Data Gathering
NL _{hours}	Fixed	12	1
ISR	Fixed	0.84	PA CFL ISR value
EUL	Fixed	8 years	1

SECTION 2: Residential Measures

LED Nightlight

Sources:

1. Southern California Edison Company, "LED, Electroluminescent & Fluorescent Night Lights", Work Paper WPSCRELG0029 Rev. 1, February 2009, p. 2 & p. 3.

2.8.3 Deemed Savings

 $\triangle kWh$ = $((6 \times (12 \times 365))/1000) \times 0.84 = 22.07 \, kWh \, (rounded to 22kWh)$

LED Nightlight Page 4

2.9 Low Flow Faucet Aerators

Measure Name	Low Flow Faucet Aerators
Target Sector	Residential
Measure Unit	Aerator
Unit Energy Savings	44 kWh ²⁹ 60 kWh
Unit Peak Demand Reduction	0.0040 kW0.0056 kW
Measure Life	12 years

Installation of low-flow faucet aerators is an inexpensive and lasting approach for water conservation. These efficient aerators reduce water consumption and consequently reduce hot water usage and save energy associated with heating the water. This protocol presents the assumptions, analysis and savings from replacing standard flow aerators with low-flow aerators in kitchens and bathrooms.

The low-flow kitchen and bathroom aerators will save on the electric energy usage due to the reduced demand of hot water. The maximum flow rate of qualifying kitchen and bathroom aerators is 1.5 gallons per minute.

This protocol documents the energy savings attributable to efficient low flow aerators in residential applications. The savings claimed for this measure are attainable in homes with standard resistive water heaters. Homes with non-electric water heaters do not qualify for this measure.

2.9.1 Algorithms

The energy savings and demand reduction are obtained through the following calculations:

 ΔkW_{peak} = ISR ×Energy Impact × F_{ED}

The Energy to Demand Factor, F_{ED} , is defined below:

 ${\it EnergyToDemandFactor} \qquad = {\it AverageUsage}_{\it SummerWDNoon-8PM} \ / \ {\it AnnualEnergyUsage}$

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from load shape data collected for a water heater and HVAC demand

Low Flow Faucet Aerators

²⁹ Segmenting by housing type using results of the 2012 PA baseline study produced savings estimates for single family and multifamily that were within 0.5 kWh of statewide estimates. Therefore, a single, statewide estimate is used.

response study for PJM³⁰. The load shapes (fractions of annual energy usage that occur within each hour) during summer week days are plotted for three business types in Figure 2-4 below.

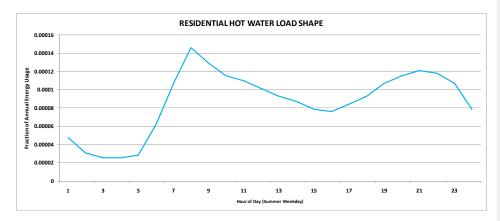


Figure 2-4: Load shapes for hot water in residential buildings taken from a PJM study.

2.9.2 Definition of Terms

The parameters in the above equation are defined in Table 2-18Table 2-18Table 2-18Table 2-16.

³⁰ Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/working-groups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx. The summer load shapes are taken from tables 14,15, and 16 in pages 5-31 and 5-32, and table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The factor is constructed as follows: 1) Obtain the average kW, as monitored for 82 water heaters in PJM territory, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, 183 spring/fall days) to obtain annual energy usage. 2) Obtain the average kW during noon to 8 PM on summer days from the same data. 3) The average noon to 8 PM demand is converted to average weekday noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study. 4) The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the *EnergyToDemandFactor*.

Table 2-181816: Low Flow Faucet Aerator Calculation Assumptions

Parameter	Description	Туре	Value	Source
F _B	Average Baseline Flow Rate of aerator (GPM) Fixed		<u>1.22.2</u>	2
F _P	Average Post Measure Flow Rate of Sprayer (GPM)	Fixed	<u>0.94</u> 1.5	2
T _{Person-Day}	Average time of hot water usage per person per day (minutes)	Fixed	<u>9.85</u> <u>4.95</u>	<u>5</u> 3
N _{Per}	Average number of persons per household	Fixed	<u>2.6</u> 2.48	<u>3</u> 4
ΔТ	Average temperature differential between <u>outgoing</u> mixed faucet water and supply water hot and cold water (°F)	Fixed	<u>35</u> 25	<u>4</u> 5
U _H	Unit Conversion: 8.33BTU/(Gallons-°F)	Fixed	8.33	Convention
U _E	Unit Conversion: 1 kWh/3413 BTU	Fixed	1/3413	Convention
Eff	Recovery eEfficiency of Electric electric Water water Heater heater	Fixed	0.980.904	<u>6</u> 2
F _{ED}	Energy To Demand Factor	Fixed	0.00009172	1
F/home	Average number of faucets in the home	Fixed	3.5	<u>3</u> 6
<u>DF</u>	Percentage of water flowing down drain	<u>Fixed</u>	<u>79.5%</u>	<u>5</u>
ISR	In Service Rate	Variable	Variable	EDC Data Gathering

Sources:

- 1. Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/working-groups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx. The summer load shapes are taken from tables 14, 15, and 16 in pages 5-31 and 5-32, and table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The factor is constructed as follows: 1) Obtain the average kW, as monitored for 82 water heaters in PJM territory, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, and 183 spring/fall days) to obtain annual energy usage. 2) Obtain the average kW during noon to 8 PM on summer days from the same data. 3) The average noon to 8 PM demand is converted to average weekday noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study. 4) The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the EnergyToDemandFactor.
- 2. Illinois TRM Effective June 1, 2012. Maximum rated flowrates of 2.2 gpm and 1.5 gpm are not an accurate measurement of actual average flowrates over a period of time because of throttling. These flowrates represent an average flow consumed over a period

of time and take occupant behavior (not always using maximum flow rates) into account. Based on results from various studies.

Public Service Commission of Wisconsin Focus on Energy Evaluation Default Deemed Savings Review, June 2008.

http://www.focusonenergy.com/files/Document_Management_System/Evaluation/acesdeemedsavingsreview_evaluationreport.pdf

EPA, Water Efficient Single Family New Home Specification, May 14, 2008.

- 2-3. Pennsylvania 2012 Residential Baseline StudyCensus of Population 2000: http://censtats.census.gov/data/PA/04042.pdf
- 4. Illinois TRM effective June 1, 2012. Based on a 90F mixed faucet temperature and a 55F supply temperature.
- Illinois TRM Effective June 1, 2012. Based on various studies with flow rates that ranged from 6.74 min/person/day to 13.4 min/person/day.
- 6. Mid Atlantic TRM Version 2.0 (updated July 2011) and Ohio TRM updated August 2010.

Vermont TRM No. 2008-53, pp. 273-274, 337, 367-368, 429-431.

East Bay Municipal Utility District; "Water Conservation Market Penetration Study". http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf

2.9.3 Deemed Savings

The deemed energy savings for the installation of a low flow aerator compared to a standard aerator is ISR \times 44 60-kWh/year with a demand reduction of ISR \times 0.0040 0.0056-kW, with ISR determined through data collection.

2.9.4 Measure Life

The measure life is 12 years, according to California's Database of Energy Efficiency Resources (DEER).

2.9.5 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

2.10 Low Flow Showerheads

Measure Name	Low Flow Showerheads
Target Sector	Residential Establishments
Measure Unit Water Heater	
Unit Energy Savings	Partially Deemed. See Section 2.10.4. 461 kWh for 1.5 GPM showerhead
Unit Peak Demand Reduction	Partially Deemed. See Section 2.10.4. 0.042 kW for 1.5 GPM showerhead
Measure Life	9 years

This measure relates to the installation of a low flow (generally 1.5 GPM) showerhead in bathrooms in homes with electric water heater. The baseline is a standard showerhead using 2.5 GPM.

Eligibility 2.10.1

This protocol documents the energy savings attributable to replacing a standard showerhead with an energy efficient low flow showerhead for electric water heaters. The target sector primarily consists of residential residences.

Algorithms 2.10.2

The annual energy savings are obtained through the following formula:

∆kWh		= ((((GPM_{base} - GPM_{low}) / GPM_{base}) * people * gals/day * days/year) / showers) * $\frac{lbs}{gal}$ * ($TEMP_{ft}$ - $TEMP_{in}$) / $\frac{RE * U_{H} * U_{E}1,000,000}$ / $\frac{EF}{0.003412}$
∆kW _{peak}		= ΔkWh * EnergyToDemandFactor
2.10.3	Definition of Terms	

GPM _{base}	=Gallons per minute of baseline showerhead = 2.5 GPM ³¹
GPM _{low}	=Gallons per minute of low flow showerhead
people	=Average number of people per household 32 =
	Single Family = $2.7 (89.57\% \text{ of homes})$ Multifamily = $1.8 (10.43\% \text{ of homes}) = 2.48^{33}$
gals/day	=Average gallons of hot water used <u>for showering per person per</u> <u>day</u> by shower per day = 11.6 ³⁴

³¹ The Energy Policy Act of 1992 established the maximum flow rate for showerheads at 2.5 gallons per minute (GPM). ³² PA 2012 Residential Baseline Study.

Low Flow Showerheads

³³ Pennsylvania, Census of Population, 2000.

	days/year	=Number of days per year = 365
	showers	=Average number of showers in the home $\frac{35}{}$ =
	6 ³⁶	Single Family = 1.7 (89.57% of homes) Multifamily = 1.3 (10.43% of homes)
	-0	
	lbs/gal	=Pounds per gallon = 8.3
	TEMP _{ft}	=Assumed temperature of water used by faucet = $\underline{105}$ ¹²⁰ ° F^{37}
ļ	TEMP _{in}	=Assumed temperature of water entering house = 55° F^{38}
	<u>RE</u> EF	=Recovery efficiency of electric hot water heater = <u>0.980.90</u> ³⁹
	<u>U</u> _H	_≡ Unit Conversion = 8.33 BTU/(Gallons-°F)
	<u>U</u> E	<u> ₌ Unit Conversion: 1 kWh / 3413 BTU</u>
	0.003412	=Constant to converts MMBtu to kWh
ļ	EnergyToDemandFa	ctor=Summer peak coincidence factor for measure = 0.00009172 ⁴⁰
	ΔkWh	=Annual kWh savings = 461kWh per fixture installed, for low flow showerhead with 1.5 GPM
	ΔkW	=Summer peak kW savings =0.042 kW.

http://www.epa.gov/watersense/docs/home_suppstat508.pdf

- Pacific Northwest Laboratory; "Energy Savings from Energy-Efficient Showerheads: REMP Case Study Results, Proposed Evaluation Algorithm, and Program Design Implications"
 - http://www.osti.gov/bridge/purl.cover.jsp:jsessionid=80456EF00AAB94DB204E848BAE65F199?purl=/1018538 5-CEkZMk/native/
- East Bay Municipal Utility District; "Water Conservation Market Penetration Study". http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf

SECTION 2: Residential Measures

Low Flow Showerheads Page

³⁴ The most commonly quoted value for the amount of hot water used for showering per person per day is 11.6 GPD. See the U.S. Environmental Protection Agency's "water sense" documents:

³⁵ PA 2012 Residential Baseline Study.

³⁶ Estimate based on review of a number of studies:

³⁷ Mid Atlantic TRM Version 2.0, Ohio TRM updated August 2010, Illinois TRM effective June 2012. Based upon a

consensus achieved at Residential Measure Protocols for TRM Teleconference held on June 2, 2010.

³⁸ A good approximation of annual average water main temperature is the average annual ambient air temperature. Average water main temperature = 55° F based on:

http://lwf.ncdc.noaa.gov/img/documentlibrary/clim81supp3/tempnormal_hires.jpg

³⁹ Mid Atlantic TRM Version 2.0 (updated July 2011) and Ohio TRM updated August 2010. Assumes an electric water-heater that meets the current federal standard (0.90 EF).

⁴⁰ Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/working-groups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx

The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage. The Energy to Demand Factor is defined as:

$$EnergyToDemandFactor = \frac{Average\ Usage_{Summer\ WD\ Noon-8}}{Annual\ Energy\ Usage}$$

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from load shape data collected for a water heater and HVAC demand response study for PJM⁴¹. The factor is constructed as follows:

- 1. Obtain the average kW, as monitored for 82 water heaters in PJM territory, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, and 183 spring/fall days) to obtain annual energy usage.
- 2. Obtain the average kW during noon to 8 PM on summer days from the same data.
- The average noon to 8 PM demand is converted to average weekday noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study,
- 4. The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the Energy to Demand Factor, or Coincidence Factor.

The load shapes (fractions of annual energy usage that occur within each hour) during summer week days are plotted in Figure 2-5 below.

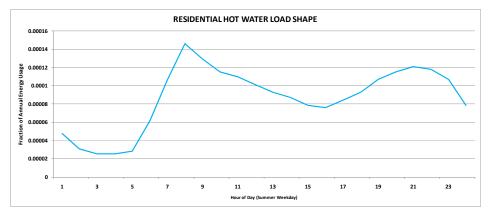


Figure 2-5: Load shapes for hot water in residential buildings taken from a PJM study.

⁴¹ Op. cit.

2.10.4 Deemed Savings

Housing Type	Low Flow Rate (gpm)	Unit Energy Savings	Unit Demand Savings
Housing Type		<u>(kWh)</u>	<u>(kW)</u>
	<u>2.0</u>	<u>167</u>	<u>0.0154</u>
Single Family	<u>1.75</u>	<u>251</u>	<u>0.0230</u>
	<u>1.5</u>	<u>335</u>	<u>0.0307</u>
	<u>2.0</u>	<u>146</u>	<u>0.0134</u>
<u>Multifamily</u>	<u>1.75</u>	<u>219</u>	<u>0.0201</u>
	<u>1.5</u>	<u>292</u>	<u>0.0268</u>
Ototovido	<u>2.0</u>	<u>166</u>	<u>0.0152</u>
<u>Statewide</u>	<u>1.75</u>	<u>249</u>	<u>0.0228</u>
	<u>1.5</u>	<u>331</u>	<u>0.0304</u>

ΔkWh = 461 kWh (assuming 1.5 GPM showerhead)

ΔkW = 0.042 kW (assuming 1.5 GPM showerhead)

2.10.5 Measure Life

According to the Efficiency Vermont Technical Reference User Manual (TRM), the expected measure life is $\bf 9$ years $\bf ^{42}$.

2.10.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

Low Flow Showerheads Page

⁴² Efficiency Vermont, Technical Reference User Manual: Measure Savings Algorithms and Cost Assumptions, TRM User Manual No. 2008-53, 07/18/08.

2.11 Programmable Thermostat

Measure Name	Programmable Thermostat
Target Sector	Residential Establishments
Measure Unit	Programmable Thermostat
Unit Energy Savings	Varies
Unit Peak Demand Reduction	Varies
Measure Life	11

Programmable thermostats are used to control heating and/or cooling loads in residential buildings by modifying the temperature set-points during specified unoccupied and nighttime hours. These units are expected to replace a manual thermostat and the savings assume an existing ducted HVAC system; however, the option exists to input higher efficiency levels if coupled with a newer unit. The EDCs will strive to educate the customers to use manufacturer default setback and setup settings.

2.11.1 Algorithms

 ΔkWh = $\Delta kWh_{COOL} + \Delta kWh_{HEAT}$

 $\triangle kWh_{COOL}$ = CAP_{COOL}/1000 X (1/(SEER x Eff_{duct}) X EFLH_{COOL} X ESF_{COOL}

 ΔkWh_{HEAT} = CAP_{HEAT}/1000 X (1/(HSPF X Eff_{duct})) X EFLH_{HEAT} X ESF_{HEAT}

 $\Delta kW_{peak} = 0$

2.11.2 Definition of Terms

CAP_{COOL} = Capacity of the air conditioning unit in BTUh, based on

nameplate capacity.

CAP_{HEAT} = Nominal heating capacity of the electric furnace in BTUh

 Eff_{duct} = Duct system efficiency

SEER = Seasonal energy efficiency ratio of the cooling unit.

HSPF = Heating seasonal performance factor of the heating unit.

ESF_{COOL,HEAT} = Energy savings factor for cooling and heating, respectively

 $EFLH_{COOL, HEAT}$ = Equivalent full load hours

Table 2-191917: Residential Electric HVAC Calculation Assumptions

Component	Туре	Value	Sources
CAP _{COOL} Variable		Nameplate data	EDC Data Gathering
		Default: 36,000 BTUh	1
CAP _{HEAT} Variable		Nameplate Data	EDC Data Gathering
		Default: 36,000 BTUh	1
SEER	Variable	Nameplate data	EDC Data Gathering
		Default: 10 SEER	2
HSPF	Variable	Nameplate data	EDC Data Gathering
		Default: 3.413 HSPF (equivalent to electric furnace COP of 1)	2
Eff _{duct}	Fixed	0.8	3
ESF _{COOL}	Fixed	2%	4
ESF _{HEAT}	Fixed	3.6%	5
EFLH _{COOL}	DefaultFixed Optional	Allentown Cooling = 487_784-Hours Erie Cooling = 389_482-Hours Harrisburg Cooling = 551_929-Hours Philadelphia Cooling = 591_1,032-Hours Pittsburgh Cooling = 432_737-Hours Scranton Cooling = 417624-Hours Williamsport Cooling = 422_659-Hours An EDC can estimate it's own EFLH based on customer billing data analysis.	EDC Data Gathering
EFLH _{HEAT}	DefaultFixed Optional	Allentown Heating = 1,193 2,492-Hours Erie Heating = 1,349 2,901-Hours Harrisburg Heating = 1,103 2,371-Hours Philadelphia Heating = 1,106 2,328-Hours Pittsburgh Heating = 1,209 2,380-Hours Scranton Heating = 1,296 2,532-Hours Williamsport Heating = 1,251 2,502-Hours An EDC can estimate it's own EFLH based on customer billing data analysis.	EDC Data Gathering
Measure Life (EUL)	Fixed	11	7

Sources:

1. Average size of residential air conditioner or furnace.

- Minimum Federal Standard for new Central Air Conditioners/Heat Pumps between 1990 and 2006.
- 3. New York Standard Approach for Estimating Energy Savings from Energy Efficiency Measures in Commercial and Industrial Programs, September 1, 2009.
- 4. DEER 2005 cooling savings for climate zone 16, assumes a variety of thermostat usage patterns.
- "Programmable Thermostats. Report to KeySpan Energy Delivery on Energy Savings and Cost Effectiveness", GDS Associates, Marietta, GA. 2002. 3.6% factor includes 56% realization rate.
- 6. Based on REM/Rate modeling using models from the PA 2012 Potential Study. EFLH calculated from kWh consumption for cooling and heating. Models assume 50% oversizing of air conditioners⁴³ and 40% oversizing of heat pumps.⁴⁴

US Department of Energy, ENERGY STAR Calculator. Accessed 3/16/2009.

6-7. New York Standard Approach for Estimating Energy Savings from Energy Efficiency Measures in Commercial and Industrial Programs, September 1, 2009, based on DEER.

Programmable Thermostat

⁴³ Neme, Proctor, Nadal, "National Energy Savings Potential From Addressing Residential HVAC Installation Problems. ACEEE, February 1, 1999. Confirmed also by *Central Air Conditioning in Wisconsin, a compilation of recent field research*. Energy Center of Wisconsin. May 2008, emended December 15, 2010

⁴⁴ ACCA, "Verifying ACCA Manual S Procedures," http://www.acca.org/Files/?id=67.

2.12 Room AC (RAC) Retirement

Measure Name	Room A/C Retirement	
Target Sector	Residential Establishments	
Measure Unit	Room A/C	
Unit Energy Savings	Varies	
Unit Peak Demand Reduction	Varies	
Measure Life	4	

This measure is defined as retirement and recycling <u>without replacement</u> of an *operable* but older and inefficient room AC (RAC) unit that would not have otherwise been recycled. The assumption is that these units will be permanently removed from the grid rather than handed down or sold for use in another location by another EDC customer, and furthermore that they would not have been recycled without this program. This measure is quite different from other energy-efficiency measures in that the energy/demand savings is not the difference between a pre- and post-configuration, but is instead the result of complete elimination of the existing RAC. Furthermore, the savings are *not* attributable to the customer that owned the RAC, but instead are attributed to a *hypothetical user of the equipment had it not been recycled*. Energy and demand savings is the estimated energy consumption of the retired unit over its remaining useful life (RUL).

2.12.1 Algorithms

Although this is a fully deemed approach, any of these values can and should be evaluated and used to improve the savings estimates for this measure in subsequent TRM revisions.

Retirement-Only

All EDC programs are currently operated under this scenario. For this approach, impacts are based only on the existing unit, and savings apply only for the remaining useful life (RUL) of the unit.

 $\triangle kWh$ = $EFLH_{RAC}$ * (CAPY/1000) * $(1/EER_{RetRAC})$ $\triangle kW_{peak}$ = (CAPY/1000) * $(1/EER_{RetRAC})$ * CF_{RAC}

Replacement and Recycling

It is not apparent that any EDCs are currently implementing the program in this manner, but the algorithms are included here for completeness. For this approach, the ENERGY STAR upgrade measure would have to be combined with recycling via a turn-in event at a retail appliance store, where the old RAC is turned in at the same time that a new one is purchased. Unlike the retirement-only measure, the savings here are attributed to the customer that owns the retired RAC, and are based on the old unit and original unit being of the same size and configuration. In this case, two savings calculations would be needed. One would be applied over the remaining life of the recycled unit, and another would be used for the rest of the effective useful life, as explained below.

For the remaining useful life (RUL) of the existing RAC: The baseline value is the EER of the retired unit.

SECTION 2: Residential Measures

 ΔkWh = EFLH_{RAC} * (CAPY/1000) * (1/EER_{ReiRAC} - 1/EER_{ES})

 ΔkW_{peak} = $(CAPY/1000) * (1/EER_{RetRAC} - 1/EER_{ES}) * CF_{RAC}$

After the RUL for (EUL-RUL) years: The baseline EER would revert to the minimum Federal appliance standard EER.

 $\triangle kWh$ = EFLH_{RAC} * (CAPY/1000) * (1/EER_b - 1/EER_{ES})

 ΔkW_{peak} = (CAPY/1000) * (1/EER_b - 1/EER_{ES}) * CF_{RAC}

2.12.2 Definition of Terms

 $EFLH_{RAC}$ = The Equivalent Full Load Hours of operation for the installed

measure. In actuality, the number of hours and time of operation can vary drastically depending on the RAC location (living room,

bedroom, home office, etc.).

Correction of ES RAC EFLH Values:

An additional step is required to determine EFLH $_{RAC}$ values. Normally, the EFLH values from the ENERGY STAR Room AC Calculator would be used directly. However, the current (July 2010) ES Room AC calculator EFLHs are too high because they are the same as those used for the Central AC calculator, whereas RAC full load hours should be much lower than for a CAC system. As such, the ES EFLH values were corrected as follows:

 $EFLH_{RAC}$ = $EFLH_{ES-RAC}$ * AF

Where:

EFLH _{ES-RAC} = Full load hours from the ENERGY STAR Room AC Calculator

AF = Adjustment factor for correcting current ES Room AC

calculator EFLHs.

Note that when the ENERGY STAR RAC calculator values are eventually corrected in the ES calculator, the corrected EFLH $_{\text{ES-RAC}}$ values can be used directly and this adjustment step can be ignored and/or deleted.

CAPY = Rated cooling capacity (size) of the RAC in Btuh.

EER_{RetRAC} = The Energy Efficiency Ratio of the unit being retired-recycled

expressed as kBtuh/kW.

 $EER_b =$ The Energy Efficiency Ratio of a RAC that just meets the

minimum federal appliance standard efficiency expressed as

kBtuh/kW.

EER_{ES} = The Energy Efficiency Ratio for an ENERGY STAR RAC

expressed as kBtuh/kW.

CF_{RAC} = Demand Coincidence Factor (See Section 1.4), which is 0.58

from the 2010 PA TRM for the "ENERGY STAR Room Air

Conditioner" measure.

1000 = Conversion factor, convert capacity from Btuh to kBtuh (1000

Btuh/kBtuh)

Table 2-202018: Room AC Retirement Calculation Assumptions

Component	Туре	Value	Sources
EFLH _{RAC}	Varies	Table 2-21: RAC Retirement-Only EFLH and Energy Savings by CityTable 2-21Table 2-19Table 2-19, "Corrected Hours"	
EFLH _{ES-RAC}	Varies	Table 2-21: RAC Retirement-Only EFLH and Energy Savings by CityTable 2-21Table 2-19Table 2-19, "Original Hours"	1
AF	Fixed	0.31	2
CAPY (RAC capacity, Btuh)	Fixed	10,000	3
EER _{RetRAC}	Fixed	9.07	4
EER _b (for a 10,000 Btuh unit)	Fixed	9.8	5
EER _{ES} (for a 10,000 Btuh unit)	Fixed	10.8	5
CF _{RAC}	Fixed	0.58	6
RAC Time Period Allocation Factors	Fixed	65.1%, 34.9%, 0.0%, 0.0%	6
Measure Life (EUL)	Fixed	4	See source notes

City Original Corrected Demand **Energy** Impact (kW) Hours Impact Hours (EFLH_{ES-RAC}) (EFLH_{RAC}) (kWh) Allentown 784 243 268 0.6395 Erie 482 149 164 Harrisburg 929 288 318 Philadelphia 1032 320 353 Pittsburgh 737 228 251 Scranton 621 193 213 Williamsport 659 204 225

Sources:

- Full load hours for Pennsylvania cities from the ENERGY STAR Room AC Calculator⁴⁶ spreadsheet, Assumptions tab. Note that the EFLH values currently used in the ES Room AC calculator are incorrect and too high because they are the same as those used for the Central AC calculator, but should be much less.
 - a. For reference, EIA-RECS for the Northeast, Middle Atlantic region shows the perhousehold energy use for an RAC = 577 kWh and an average of 2.04 units perhome, so the adjusted RAC use = 283 kWh per unit. This more closely aligns with the energy consumption for room AC using the adjusted EFLH values than without adjustment.
- Mid Atlantic TRM Version 1.0. <u>April 28, 2010</u> Draft. Prepared by Vermont Energy Investment Corporation. An adjustment to the ES RAC EFLHs of 31% was used for the "Window A/C" measure. <u>The average ratio of EFLH for Room AC provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008⁴⁷ to FLH for Central Cooling for the same location (provided by AHRI: http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/Calc CAC.xls> is 31%. This factor was applied to the EFLH for Central Cooling provided for PA cities and averaged to come up with the assumption for EFLH for Room AC."
 </u>

Table 2-21 Table 2-21 Table 2-19 should be used with a master "mapping table™ that maps the zip codes for all PA cities to one of the representative cities above. This mapping table would also be used for the TRM ENERGY STAR Room Air Conditioning measure. This table will be developed in the context of the TWG.

 $\frac{\text{http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/CalculatorConsumerRoomAC.xls}}{\text{AC calculator is here: } \frac{\text{http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/Calc CAC.xls}}{\text{http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/Calc CAC.xls}}}.$

<http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF %20Res%20RAC.pdf>

⁴⁵

 $^{^{\}rm 46}$ The Room AC calculator can be found here

- 3. 10,000 Btuh is the typical size assumption for the ENERGY STAR Room AC Savings calculator. It is also used as the basis for PA TRM ENERGY STAR Room AC measure savings calculations, even though not explicitly stated in the TRM. For example:
 - a. Energy savings for Allentown = 74 kWh and EFLH = 784 hrs:

784 * (10,000/1000) * (1/9.8 - 1/10.8) = 74 kWh.

- b. CPUC 2006-2008 EM&V, "Residential Retrofit High Impact Measure Evaluation Report", prepared for the CPUC Energy Division, February 8, 2010, page 165, Table 147 show average sizes of 9,729 and 10,091 Btuh.
- 4. Massachusetts TRM, Version 1.0, October 23, 2009, "Room AC Retirement" measure, Page 52-54. Assumes an existing/recycled unit EER=9.07, reference is to weighted 1999 AHAM shipment data. This value should be evaluated and based on the actual distribution of recycled units in PA and revised in later TRMs if necessary. Other references include:
 - a. ENERGY STAR website materials on Turn-In programs, if reverse-engineered indicate an EER of 9.16 is used for savings calculations for a 10 year old RAC. Another statement indicates that units that are at least 10 years old use 20% more energy than a new ES unit which equates to: 10.8 EER/1.2 = 9 EER http://www.energystar.gov/ia/products/recycle/documents/RoomAirConditionerTurn-InAndRecyclingPrograms.pdf
 - b. "Out With the Old, in With the New: Why Refrigerator and Room Air Conditioner Programs Should Target Replacement to Maximize Energy Savings." National Resources Defense Council, November 2001. Page 3, Cites a 7.5 EER as typical for a room air conditioner in use in 1990s. However, page 21 indicates an 8.0 EER was typical for a NYSERDA program.
- 5. ENERGY STAR and Federal Appliance Standard minimum EERs for a 10,000 Btuh unit with louvered sides.http://www.energystar.gov/index.cfm?c=roomac.pr crit room ac
- PA TRM June 2010, coincident demand factor and Time Period Allocation Factors for ENERGY STAR Room AC.

2.12.3 Measure Life

Room Air Conditioner Retirement = 4 years

From the PA TRM, the EUL for an ENERGY STAR Room Air Conditioner is 10 years, but the TRM does not provide an RUL for RACs. However, as shown in <u>Table 2-22Table 2-22</u>

⁴⁸ Residential Appliance Recycling Program Year 1 Evaluation Report – Final Report, prepared for Commonwealth Edison by Itron (under contract to Navigant Consulting), November 2009.

- DEER database, presents several values for EUL/RUL for room AC recycling: http://www.deeresources.com/deer2008exante/downloads/EUL_Summary_10-1-08.xls
 - a. DEER 0607 recommendation: EUL=9, RUL=1/3 of EUL = 3 years. The 1/3 was defined as a "reasonable estimate", but no basis given.
 - b. 2005 DEER: EUL=15, did not have recycling RUL
 - c. Appliance Magazine and ENERGY STAR calculator: EUL=9 years
 - d. CA IOUs: EUL=15, RUL=5 to 7
- 2. "Out With the Old, in With the New: Why Refrigerator and Room Air Conditioner Programs Should Target Replacement to Maximize Energy Savings," National Resources Defense Council, November 2001, page 21, 5 years stated as a credible estimate.
- From the PA TRM June 2010, if the ratio of refrigerator recycling measure life to ENERGY STAR measure life is applied: (8/13) * 10 years (for RAC) = 6 years for RAC recycling.

Table 2-22220: Preliminary Results from ComEd RAC Recycling Evaluation

Appliance Type Age in Years					N					
	0 to 5	6 to 10	11 to 15	16 to 20	21 to 25	26 to 30	31 to 35	36 to 40	Over 40	
Room Air Conditioners	0%	5%	7%	18%	37%	18%	5%	6%	5%	

Sources:

1. Navigant Consulting evaluation of ComEd appliance recycling program.

2.13 Smart Strip Plug Outlets

Measure Name	Smart Strip Plug Outlets
Target Sector	Residential
Measure Unit	Per Smart Strip
Unit Energy Savings	184 kWh
Unit Peak Demand Reduction	0.013 kW
Measure Life	5 years

Smart Strips are power strips that contain a number of controlled sockets with at least one uncontrolled socket. When the appliance that is plugged into the uncontrolled socket is turned off, the power strips then shuts off the items plugged into the controlled sockets.

2.13.1 Eligibility

This protocol documents the energy savings attributed to the installation of smart strip plugs. The most likely area of application is within residential spaces, i.e. single family and multifamily homes. The two areas of usage considered are home computer systems and home entertainment systems. It is expected that approximately four items will be plugged into each power strip.

2.13.2 Algorithms

The DSMore Michigan Database of Energy Efficiency Measures performed engineering calculations using standard standby equipment wattages for typical computer and TV systems and idle times. The energy savings and demand reduction were obtained through the following calculations:

2.13.3 Definition of Terms

The parameters in the above equation are listed in <u>Table 2-23Table 2-23Table 2-21</u>.

Table 2-232321: Smart Strip Plug Outlet Calculation Assumptions

Parameter	Component	Туре	Value	Source
kW _{comp}	Idle kW of computer system	Fixed	0.0201	1
Hr _{comp}	Daily hours of computer idle time	Fixed	20	1
kW _{TV}	Idle kW of TV system	Fixed	0.0320	1
Hr _{TV}	Daily hours of TV idle time	Fixed	19	1
CF	Coincidence Factor	Fixed	0.50	1

Sources:

1. DSMore MI DB

2.13.4 Deemed Savings

 ΔkWh = 184 kWh

 $\Delta kW_{peak} = 0.013 \ kW$

2.13.5 Measure Life

To ensure consistency with the annual savings calculation procedure used in the DSMore MI database, the measure life of **5 years** is taken from DSMore.

2.13.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

2.14 Solar Water Heaters

Measure Name	Solar Water Heaters
Target Sector	Residential Establishments
Measure Unit	Water Heater
Unit Energy Savings	<u>1,623</u>
Unit Peak Demand Reduction	<u>0.149_0.376-k</u> W
Measure Life	15 years

Solar water heaters utilize solar energy to heat water, which reduces electricity required to heat water.

2.14.1 Eligibility

This protocol documents the energy savings attributed to solar water in PA. The target sector primarily consists of single-family residences.

2.14.2 Algorithms

The energy savings calculation utilizes average performance data for available residential solar and standard water heaters and typical water usage for residential homes. The energy savings are obtained through the following formula:

$$\angle AkWh = \frac{\left\{ \left(\frac{1}{EF_{Base}} - \frac{1}{EF_{Proposed}}\right) \times \left(HW \times 365 \times 8.3 \frac{Ib}{gal} \times (T_{hot} - T_{cold})\right) \right\}}{3413 \frac{Btu}{kWh}}$$

The energy factor used in the above equation represents an average energy factor of market available solar water heaters⁴⁹. The demand reduction is taken as the annual energy *usage* of the baseline water heater multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage. Note that this is a different formulation than the demand savings calculations for other water heaters. This modification of the formula reflects the fact that a solar water heater's capacity is subject to seasonal variation, and that during the peak summer season (top 100 hours), the water heater is expected to fully supply all domestic hot water needs.

$$\Delta kW_{\text{peak}}$$
 = EnergyToDemandFactor × BaseEnergy Usage

The Energy to Demand Factor is defined below:

$$EnergyToDemandFactor = \frac{Average\ Usage_{Summer\ WD\ Noon-8}}{Annual\ Energy\ Usage}$$

SECTION 2: Residential Measures

⁴⁹ We have taken the average energy factor for all solar water heaters with collector areas of 50 ft2 or smaller from http://www.solar-rating.org/ratings/ratings.htm. As a cross check, we have calculated that the total available solar energy in PA for the same set of solar collectors is about twice as much as the savings claimed herein – that is, there is sufficient solar capacity to actualize an average energy factor of 1.84.

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from load shape data collected for a water heater and HVAC demand response study for PJM⁵⁰. The factor is constructed as follows:

- Obtain the average kW, as monitored for 82 water heaters in PJM territory⁵¹, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, and 183 spring/fall days) to obtain annual energy usage.
- Obtain the average kW during noon to 8 PM on summer days from the same data. Noon to 8 PM is used because most of the top 100 hours (over 80%) occur during noon and 8 PM⁵².
- The average noon to 8 PM demand is converted to average weekday noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study⁵³.
- 4. The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the *EnergyToDemandFactor*.

The load shapes (fractions of annual energy usage that occur within each hour) during summer week days are plotted for three business types in Figure 2-6

SECTION 2: Residential Measures

⁵⁰ Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/working-groups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx
⁵¹ The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken

The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taker from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32

⁵² On the other hand, the band would have to expanded to at least 12 hours to capture all 100 hours.

⁵³ The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays.

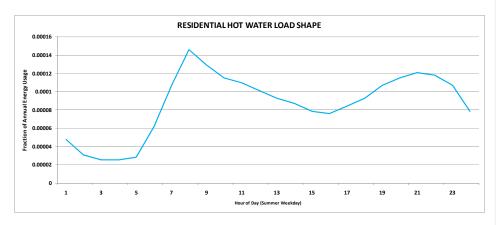


Figure 2-6: Load shapes for hot water in residential buildings taken from a PJM study.

2.14.3 Definition of Terms

The parameters in the above equation are listed in <u>Table 2-24Table 2-24Table 2-22</u>.

Table 2-242422: Solar Water Heater Calculation Assumptions

Component	Туре	Values	Source
EF _{base} , Energy Factor of baseline electric heater	Fixed	0.904	6
EF _{proposed} , Year-round average Energy Factor of proposed solar water heater	Fixed 1.84		1
HW , Hot water used per day in gallons	Fixed	50 64.3 gallon/day	7
T _{hot} , Temperature of hot water	Fixed	120 F	8
T _{cold} , Temperature of cold water supply	Fixed	55 F	9
Baseline Energy Usage (kWh)	Calculated	<u>3,191</u> 4,104	
EnergyToDemandFactor: Ratio of average Noon to 8 PM usage during summer peak to annual energy usage	Fixed	0.00009172	2-5

Sources:

- 1. The average energy factor for all solar water heaters with collector areas of 50 ft² or smaller is from http://www.solar-rating.org/ratings/ratings.htm. As a cross check, we have calculated that the total available solar energy in PA for the same set of solar collectors is about twice as much as the savings claimed herein that is, there is sufficient solar capacity to actualize an average energy factor of 1.84.
- Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/workinggroups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx

SECTION 2: Residential Measures

- 3. The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32
- 4. On the other hand, the band would have to be expanded to at least 12 hours to capture all 100 hours.
- 5. The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays.
- Federal Standards are 0.97 -0.00132 x Rated Storage in Gallons. For a 50-gallon tank this is approximately 0.90. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE–2006–BT-STD–0129, p. 30
- "Energy Conservation Program for Consumer Products: Test Procedure for Water Heaters", Federal Register / Vol. 63, No. 90, pp. 26005-26006.p. 25996
- 8. Many states have plumbing codes that limit shower and bathtub water temperature to 120 °F.
- 9. Mid-Atlantic TRM, footnote #24

2.14.4 Deemed Savings

 ΔkWh = $\frac{1,623}{2,088} kWh$ ΔkW_{neak} = $0.149 \frac{0.376}{0.376} kW$

2.14.5 Measure Life

The expected useful life is 15⁵⁴ years, according to ENERGY STAR⁵⁵.

2.14.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

SECTION 2: Residential Measures

⁵⁴ The actual measure life for the Solar Water Heater measure is 20 years according to ENERGY STAR, but is reduced to 15 years per Act 129.

⁵⁵ http://www.energystar.gov/index.cfm?c=solar_wheat.pr_savings_benefits

2.15 **Electric Water Heater Pipe Insulation**

Measure Name	Electric Water Heater Pipe Insulation
Target Sector	Residential Establishments
Measure Unit	Water Heater
Unit Energy Savings	<u>96</u> 124 kWh
Unit Peak Demand Reduction	- <u>0.0088_0.011</u> -kW
Measure Life	13 years

This measure relates to the installation of foam insulation and reducing the water heating set point from 3-4 degrees Fahrenheit on 10 feet of exposed pipe in unconditioned space, 3/2" thick. The baseline for this measure is a standard efficiency electric water heater (EF=0.904) with an annual energy usage of 3,191 4,122 kWh. 56

2.15.1 Eligibility

This protocol documents the energy savings for an electric water heater attributable to insulating 10 feet of exposed pipe in unconditioned space, 3/4" thick. The target sector primarily consists of residential residences.

2.15.2 **Algorithms**

The annual energy savings are assumed to be 3% of the annual energy use of an electric water heater (3,191 4,122 kWh), or 96 124 kWh. This estimate is based on a recent report prepared by the ACEEE for the State of Pennsylvania. 57

 ΔkWh = <u>96</u>124 kWh

The summer coincident peak kW savings are calculated as follows:

 ΔkW_{peak} = ΔkWh * EnergyToDemandFactor

2.15.3 **Definition of Terms**

= Annual kWh savings = 96 124kWh per fixture installed ΔkWh

EnergyToDemandFactor= Summer peak coincidence factor for measure = 0.00009172⁵⁸

=Summer peak kW savings = 0.0088 0.011 kW. ΔkW_{peak}

⁵⁶ See Section Error! Reference source not found. for assumptions used to calculate annual energy usage.

⁵⁷ American Council for an Energy-Efficient Economy, Summit Blue Consulting, Vermont Energy Investment Corporation, ICF International, and Synapse Energy Economics, Potential for Energy Efficiency, Demand Response, and Onsite Solar Energy in Pennsylvania, Report Number E093, April 2009, p. 117.

58 Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM

Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/workinggroups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx

The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage. The Energy to Demand Factor is defined as:

$$EnergyToDemandFactor = \frac{Average\ Usage}{Annual\ Energy\ Usage}$$

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from load shape data collected for a water heater and HVAC demand response study for PJM⁵⁹. The factor is constructed as follows:

- 1. Obtain the average kW, as monitored for 82 water heaters in PJM territory, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, and 183 spring/fall days) to obtain annual energy usage.
- 2. Obtain the average kW during noon to 8 PM on summer days from the same data.
- The average noon to 8 PM demand is converted to average weekday noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study,
- 4. The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the Energy to Demand Factor, or Coincidence Factor.

The load shapes (fractions of annual energy usage that occur within each hour) during summer week days are plotted in Figure 2-7.

Op. cit.		

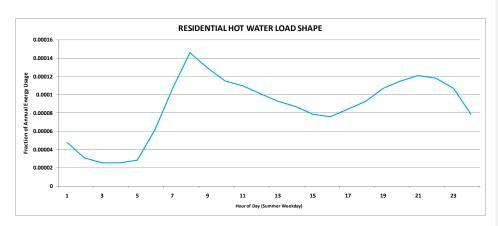


Figure 2-7: Load shapes for hot water in residential buildings taken from a PJM study.

2.15.4 Measure Life

According to the Efficiency Vermont Technical Reference User Manual (TRM), the expected measure life is ${\bf 13~years^{60}}$.

2.15.5 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

⁶⁰ Efficiency Vermont, Technical Reference User Manual: Measure Savings Algorithms and Cost Assumptions, TRM User Manual No. 2008-53, 07/18/08.

2.16 Residential Whole House Fans

Measure Name	Whole House Fans
Target Sector	Residential Establishments
Measure Unit	Whole House Fan
Unit Energy Savings	Varies by location (187 kWh/yr to 232 kWh/yr)
Unit Peak Demand Reduction	0 kW
Measure Life	15 years

This measure applies to the installation of a whole house fan. The use of a whole house fan will offset existing central air conditioning loads. Whole house fans operate when the outside temperature is less than the inside temperature, and serve to cool the house by drawing cool air in through open windows and expelling warmer air through attic vents.

The baseline is taken to be an existing home with central air conditioning (CAC) and without a whole house fan.

The retrofit condition for this measure is the installation of a new whole house fan.

2.16.1 Algorithms

The energy savings for this measure result from reduced air conditioning operation. While running, whole house fans can consume up to 90% less power than typical residential central air conditioning units. Energy savings for this measure are based on whole house fan energy savings values reported by the energy modeling software, REM/Rate 62.

2.16.2 Model Assumptions

- The savings are reported on a "per house" basis with a modeled baseline cooling provided by a SEER 10 Split A/C unit.
- Savings derived from a comparison between a naturally ventilated home and a home with a whole-house fan.
- 2181 square-foot single-family detached home built over unconditioned basement.⁶³

⁶¹ Whole House Fan, Technology Fact Sheet, (March 1999), Department of Energy Building Technologies Program, DOE/GO-10099-745, accessed October 2010

http://www.energysavers.gov/your home/space heating cooling/related.cfm/mytopic=12357

⁶² Architectural Energy Corporation, REM/Rate v12.85.

⁶³ EIA (2005), Table HC1.1.3: "Housing Unit Characteristics by Average Floorspace",

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hcfloorspace/pdf/tablehc1.1.3.pdf Used Single Family Detached "Heated" value for Mid-Atlantic region as representative of the living space cooled by a 10 SEER Split A/C unit. The floorspace recorded for "Cooling" is likely to be affected by Room A/C use.

Table 2-252523: Whole House Fan Deemed Energy Savings by PA City

City	Annual Energy Savings (kWh/house)
Allentown	204
Erie	200
Harrisburg	232
Philadelphia	229
Pittsburgh	199
Scranton	187
Williamsport	191

This measure assumes <u>no demand savings</u> as whole house fans are generally only used during milder weather (spring/fall and overnight). Peak 100 hours typically occur during very warm periods when a whole house fan is not likely being used.

2.16.3 Measure Life

Measure life = 20 years⁶⁴ (15 year maximum for PA TRM)

⁶⁴ DEER EUL Summary, Database for Energy Efficient Resources, accessed October 2010, http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

2.17 Ductless Mini-Split Heat Pumps

Measure Name	Ductless Heat Pumps
Target Sector	Residential Establishments
Measure Unit	Ductless Heat Pumps
Unit Energy Savings	Variable based on efficiency of systems
Unit Peak Demand Reduction	Variable based on efficiency of systems
Measure Life	15 <u>years</u>

ENERGY STAR ductless "mini-split" heat pumps utilize high efficiency SEER/EER and HSPF energy performance factors of 14.5/12 and 8.2, respectively, or greater. This technology typically converts an electric resistance heated home into an efficient single or multi-zonal ductless heat pump system. Homeowners have choice to install an ENERGY STAR qualified model or a standard efficiency model.

2.17.1 Eligibility

This protocol documents the energy savings attributed to ductless mini-split heat pumps with energy efficiency performance of 14.5/12 SEER/EER and 8.2 HSPF or greater with inverter technology. The baseline heating system could be an existing electric resistance heating, a lower-efficiency ductless heat pump system, a ducted heat pump, electric furnace, or a non-electric fuel-based system. The baseline cooling system can be a standard efficiency heat pump system, central air conditioning system, or room air conditioner. In addition, this could be installed in new construction or an addition. For new construction or addition applications, the baseline assumption is a standard-efficiency ductless unit. The DHP systems could be installed as the primary heating or cooling system for the house or as a secondary heating or cooling system for a single room.

2.17.2 Algorithms

The savings depend on three main factors: baseline condition, usage (primary or secondary heating system), and the capacity of the indoor unit.

The algorithm is separated into two calculations: single zone and multi-zone ductless heat pumps. The savings algorithm is as follows:

Single Zone:

 ΔkWh = $\Delta kWh_{cool} + \Delta kWh_{heat}$

 ΔkWh_{heat} = CAPY_{heat}/1000 X (1/HSPF_b - 1/HSPF_e) X EFLH_{heat} X LF

 ΔkWh_{cool} = CAPY_{cool}/1000 X (1/SEER_b – 1/SEER_e) X EFLH_{cool} X LF

⁶⁵ The measure energy efficiency performance is based on ENERGY STAR minimum specification requirements as specified in ARHI and CEE directory for ductless mini-split heat pumps. Ductless heat pumps fit these criteria and can easily exceed SEER levels of 16 or greater.

 ΔkW_{peak} = CAPY_{cool}/1000 X (1/EER_b - 1/EER_e) X CF

Multi-Zone:

 $\triangle kWh$ = $\triangle kWh_{cool} + \triangle kWh_{heat}$

 ΔkWh_{heat} = [CAPY_{heat}/1000 X (1/HSPF_b - 1/HSPF_e) X EFLH_{heat} X LF]_{ZONE1}

+ $[CAPY_{heat}/1000 \ X \ (1/HSPF_b \ - \ 1/HSPF_e) \ X \ EFLH_{heat} \ X \ LF]_{ZONE2}$ + $[CAPY_{heat}/1000 \ X \ (1/HSPF_b \ - \ 1/HSPF_e) \ X \ EFLH_{heat} \ X \ LF]_{ZONEn}$

 ΔkWh_{cool} = [CAPY_{cool}/1000 X (1/SEER_b - 1/SEER_e) X EFLH_{cool} X LF]_{ZONE1}

+ $[CAPY_{coo}/1000 X (1/SEER_b - 1/SEER_e) X EFLH_{coo} X LF]_{ZONE2}$ + $[CAPY_{coo}/1000 X (1/SEER_b - 1/SEER_e) X EFLH_{coo} X LF]_{ZONEn}$

 ΔkW_{peak} = [CAPY_{coo}/1000 X (1/EER_b - 1/EER_e) X CF]_{ZONE1} +

 $[CAPY_{coo}/1000~X~(1/EER_b-1/EER_e)~X~CF]_{ZONE2}$ + $[CAPY_{coo}/1000~X~(1/EER_b-1/EER_e)~X~CF]_{ZONEn}$

2.17.3 Definition of Terms

 $CAPY_{cool, heat}$ = The cooling or heating (at 47° F) capacity of the indoor unit,

given in BTUH as appropriate for the calculation

 $EFLH_{cool, heat}$ = Equivalent Full Load Hours – If the unit is installed as the

primary heating or cooling system, as defined in Table 2-2527, the EFLH will use the EFLH primary hours listed in Table 2-2426. If the unit is installed as a secondary heating or cooling system, the EFLH will use the EFLH secondary hours listed in Table 2-

<u>2426</u>.

 $HSPF_b$ = Heating efficiency of baseline unit

HSPB_e = Efficiency of the installed DHP

 $SEER_b$ = Cooling efficiency of baseline unit

SEER_e = Efficiency of the installed DHP

EER_b = The Energy Efficiency Ratio of the baseline unit

EER_e = The Energy Efficiency Ratio of the efficient unit

LF = Load factor

Component	Туре	Values	Sources
CAPY _{cool} CAPY _{heat}	Variable	EDC Data Gathering	AEPS Application; EDC Data Gathering
EFLH primary Fixed		Allentown Cooling = 487 784 Hours	1
		Allentown Heating = 1,193,2,492 Hours	
		Erie Cooling = 389482 Hours	
		Erie Heating = <u>1,349</u> <u>2,901</u> Hours	
		Harrisburg Cooling = <u>551</u> <u>929</u> Hours	
		Harrisburg Heating = 1,103 2,371 Hours	
		Philadelphia Cooling = <u>591</u> <u>1,032</u> Hours	
		Philadelphia Heating = 1,060 2,328 Hours	
		Pittsburgh Cooling = 432 737 Hours	
		Pittsburgh Heating = <u>1,209</u> 2,380 Hours	
		Scranton Cooling = 417 621 Hours	
		Scranton Heating = 1,296 2,532 Hours	
		Williamsport Cooling = <u>422</u> <u>659</u> Hours	
		Williamsport Heating = 1,251 2,502 Hours	
		An EDC can estimate it's own EFLH based	
	<u>Optional</u>	on customer billing data analysis.	EDC Data Gathering
EFLH	Fixed	Allentown Cooling = 243 Hours	2, 3
secondary		Allentown Heating = 800 1,671 Hours	
		Erie Cooling = 149 Hours	
		Erie Heating = 994 2,138 Hours	
		Harrisburg Cooling = 288 Hours	
		Harrisburg Heating = 782 1,681 Hours	
		Philadelphia Cooling = 320 Hours	
		Philadelphia Heating = 712 1,565 Hours	
		Pittsburgh Cooling = 228 Hours	
		Pittsburgh Heating = 848 1,670 Hours	
		Scranton Cooling = 193 Hours	
		Scranton Heating = 925 1,806 Hours	
		Williamsport Cooling = 204 Hours	
		Williamsport Heating = 875 1,750 hours	
HSPF _b	Fixed	Standard DHP: 7.7	4, 6
		Electric resistance: 3.413	
		ASHP: 7.7	
		Electric furnace: 3.242	
		No existing or non-electric heating: use standard DHP: 7.7	

Component	Туре	Values	Sources
SEERb	Fixed	DHP, ASHP, or central AC: 13	5, 6, 7
		Room AC: 11	
		No existing cooling for primary space: use DHP, ASHP, or central AC: 13	
		No existing cooling for secondary space: use Room AC: 11	
HSPF _e	Variable	Based on nameplate information. Should be at least ENERGY STAR.	AEPS Application; EDC Data Gathering
SEER _e	Variable	Based on nameplate information. Should be at least ENERGY STAR.	AEPS Application; EDC Data Gathering
CF	Fixed	70%	8
EER _b	Fixed	= (11.3/13) X SEER _b for DHP or central AC	5,9
		= 9.8 room AC	
EERe	Variable	= (11.3/13) X SEER _e	AEPS Application;
		Based on nameplate information. Should be at least ENERGY STAR.	EDC Data Gathering
LF	Fixed	25%	10

Sources:

- Based on REM/Rate modeling using models from the PA 2012 Potential Study. EFLH
 calculated from kWh consumption for cooling and heating. Models assume 50% oversizing of air conditioners⁶⁶ and 40% oversizing of heat pumps.⁶⁷
 - US Department of Energy, ENERGY STAR Calculator. Accessed 3/16/2009. From-Pennsylvania's Technical Reference Manual.
- 4-2. Secondary cooling load hours based on room air conditioner "corrected" EFLH work paper that adjusted the central cooling hours to room AC cooling hours; see Section 2.12 Room AC Retirement measure.
- 2.3. Secondary heating hours based on a ratio of HDD base 68 and base 60 deg F. The ratio is used to reflect the heating requirement for secondary spaces is less than primary space as the thermostat set point in these spaces is generally lowered during unoccupied time periods.
- 3.4. COP = 3.413 HSPF for electric resistance heating. Electric furnace efficiency typically varies from 0.95 to 1.00 and thereby assumed a COP 0.95 = 3.242.
- 4.5. Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.

⁶⁶ Neme, Proctor, Nadal, "National Energy Savings Potential From Addressing Residential HVAC Installation Problems. ACEEE,
February 1, 1999. Confirmed also by Central Air Conditioning in Wisconsin, a compilation of recent field research. Energy Center of
Wisconsin. May 2008, emended December 15, 2010

⁶⁷ ACCA, "Verifying ACCA Manual S Procedures," http://www.acca.org/Files/?id=67.

- 5.6. Air-Conditioning, Heating, and Refrigeration Institute (AHRI); the directory of the available ductless mini-split heat pumps and corresponding efficiencies (lowest efficiency currently available). Accessed 8/16/2010.
- 6-7. SEER based on average EER of 9.8 for room AC unit. From Pennsylvania's Technical Reference Manual.
- 7.8. Based on an analysis of six different utilities by Proctor Engineering. From Pennsylvania's Technical Reference Manual.
- 8-9. Average EER for SEER 13 unit. From Pennsylvania's Technical Reference Manual.
- Data The load factor is used to account for inverter-based DHP units operating at partial loads. The value was chosen to align savings with what is seen in other jurisdictions, based on personal communication with Bruce Manclark, Delta-T, Inc., who is working with Northwest Energy Efficiency Alliance (NEEA) on the Northwest DHP Project http://www.nwductless.com/, and the results found in the "Ductless Mini Pilot Study" by KEMA, Inc., June 2009. This adjustment is required to account for partial load conditions and because the EFLH used are based on central ducted systems which may overestimate actual usage for baseboard systems.

2.17.4 Definition of Heating Zone

Definition of primary and secondary heating systems depends primarily on the location where the source heat is provided in the household, and shown in <u>Table 2-27Table 2-27Table 2-25</u>.

i abie z	/- <u>212125</u> : DHF	– Heating	Zones

Component	Definition
Primary Heating Zone	Living room Dining room House hallway Kitchen areas Family Room Recreation Room
Secondary Heating Zone	Bedroom Bathroom Basement Storage Room Office/Study Laundry/Mudroom Sunroom/Seasonal Room

2.17.5 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources, a heat pump's lifespan is $15 \ years$. 68

⁶⁸ DEER values, updated October 10, 2008. Various sources range from 12 to 20 years, DEER represented a reasonable mid-range. http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

2.17.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings. A sample of pre- and post-metering is recommended to verify heating and cooling savings.

2.18 Fuel Switching: Domestic Hot Water Electric to Gas

Measure Name	Fuel Switching: DHW Electric to Gas
Target Sector	Residential
Measure Unit	Water Heater
Unit Energy Savings	<u>3,191_4104</u> kWh
Unit Peak Demand Reduction	<u>0.293_0.376-</u> kW
Gas Consumption Increase	<u>16.58</u> <u>21.32</u> MMBtu
Measure Life	13 years

Natural gas water heaters generally offer the customer lower costs compared to standard electric water heaters. Additionally, they typically see an overall energy savings when looking at the source energy of the electric unit versus the gas unit. Standard electric water heaters have energy factors of 0.904 and a federal standard efficiency gas water heater has an energy factor of 0.594 for a 40gal unit.

2.18.1 Eligibility

This protocol documents the energy savings attributed to converting from a standard electric water heater with Energy Factor of 0.904 or greater to a standard natural gas water heater with Energy Factor of 0.594 or greater. The target sector primarily consists of single-family residences.

2.18.2 Algorithms

The energy savings calculation utilizes average performance data for available residential standard electric and natural gas water heaters and typical water usage for residential homes. Because there is little electric energy associated with a natural gas water heater, the energy savings are the full energy utilization of the electric water heater. The energy savings are obtained through the following formula:

$$\angle kWh = \frac{\left\{ \left(\frac{1}{\mathsf{EF}_{\mathsf{Elec},\mathsf{bl}}} \right) \times \left(\mathsf{HW} \times 365 \times 8.3 \, \frac{\mathsf{lb}}{\mathsf{gal}} \times (\mathsf{T}_{\mathsf{hot}} - \mathsf{T}_{\mathsf{cold}}) \right) \right\}}{3413 \, \frac{\mathsf{Btu}}{\mathsf{kWh}}}$$

Although there is a significant electric savings, there is an associated increase in natural gas energy consumption. While this gas consumption does not count against PA Act 129 energy savings, it is expected to be used in the program TRC test. The increased natural gas energy is obtained through the following formula:

Gas Consumption (MMBtu)
$$= \frac{\left\{ \left(\frac{1}{\mathsf{EF}_{\mathsf{NG},\mathsf{inst}}}\right) \times \left(\mathsf{HW} \times 365 \times 8.3 \frac{\mathsf{lb}}{\mathsf{gal}} \times (\mathsf{T}_{\mathsf{hot}} - \mathsf{T}_{\mathsf{cold}})\right) \right\}}{1,000,000 \frac{\mathsf{Btu}}{\mathsf{MMBtu}}}$$

Demand savings result from the removal of the connected load of the electric water heater. The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage.

SECTION 2: Residential Measures

 ΔkW_{peak}

= EnergyToDemandFactor × Energy Savings

The Energy to Demand Factor is defined below:

EnergyToDemandFactor

 $= \frac{Average\ Usage}{Annual\ Energy\ Usage}$

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from load shape data collected for a water heater and HVAC demand response study for PJM⁶⁹. The factor is constructed as follows:

- 1. Obtain the average kW, as monitored for 82 water heaters in PJM territory⁷⁰, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, and 183 spring/fall days) to obtain annual energy usage.
- 2. Obtain the average kW during noon to 8 PM on summer days from the same data.
- 3. The average noon to 8 PM demand is converted to average weekday noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study⁷¹.
- 4. The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the EnergyToDemandFactor.

The load shapes (fractions of annual energy usage that occur within each hour) during summer week days are plotted in Figure 2-8Figure 2-8Figure 2-8.

⁶⁹ Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/workinggroups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx

⁷⁰ The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32

⁷¹ The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays.

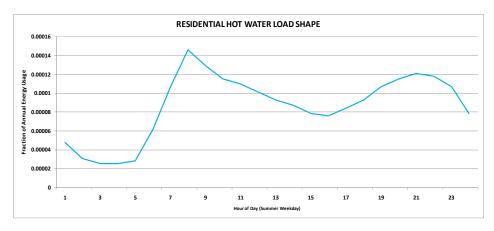


Figure 2-8: Load shapes for hot water in residential buildings taken from a PJM.

2.18.3 Definition of Terms

The parameters in the above equation are listed in Table 2-28Table 2-28Table 2-26 below.

Table 2-282826: Calculation Assumptions for Fuel Switching, Domestic Hot Water Electric to Gas

Component	Туре	Values	Source
EF _{elect,bl} , Energy Factor of baseline water heater	Fixed	0.904	4
EF _{NG,inst} , Energy Factor of installed natural gas water heater	Variable	>=0.594	5
HW, Hot water used per day in gallons	Fixed	50 64.3 gallon/day	6
T _{hot} , Temperature of hot water	Fixed	120 °F	7
T _{cold} , Temperature of cold water supply	Fixed	55 °F	8
EnergyToDemandFactor	Fixed	0.00009172	1-3

Sources:

- Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/workinggroups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx
- 2. The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32
- 3. The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays.

- Federal Standards are 0.97 -0.00132 x Rated Storage in Gallons. For a 50-gallon tank this is 0.904. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE–2006–BT-STD–0129, p. 30
- Federal Standards are 0.67 -0.0019 x Rated Storage in Gallons. For a 40-gallon tank this is 0.594. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE–2006–BT-STD–0129, p. 30
- "Energy Conservation Program for Consumer Products: Test Procedure for Water Heaters", Federal Register / Vol. 63, No. 90, p. 26005-26006,25996
- 7. Many states have plumbing codes that limit shower and bathtub water temperature to 120 °F.
- 8. Mid-Atlantic TRM, footnote #24

2.18.4 Deemed Savings

The deemed savings for the installation of a natural gas water heater in place of a standard electric water heater are listed in <u>Table 2-29Table 2-29Table 2-29</u>Table 2-27 below.

Table 2-292927: Energy Savings and Demand Reductions for Fuel Switching, Domestic Hot Water Electric to Gas

Electric unit Energy Factor	Energy Savings (kWh)	Demand Reduction (kW)
0.904	<u>3,191</u> 4104	<u>0.293</u> 0.376

The deemed gas consumption for the installation of a standard efficiency natural gas water heater in place of a standard electric water heater is listed in Table 2-30Table 2-30Table 2-28 below.

Table 2-303028: Gas Consumption for Fuel Switching, Domestic Hot Water Electric to Gas

Gas unit Energy Factor	Gas Consumption (MMBtu)	
0.594	<u>16.58</u> 21.32	

2.18.5 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources, a gas water heater's lifespan is **13 years**⁷².

2.18.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

 $http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls$

⁷² DEER values, updated October 10, 2008:

State of Pennsylvania

2.19 Fuel Switching: Heat Pump Water Heater to Gas Water Heater

Measure Name	Fuel Switching: Heat Pump Water Heater to Gas Water Heater	
Target Sector	Residential	
Measure Unit	Water Heater	
Unit Energy Savings	1,7172208-kWh (for EF = 2.0)	
Unit Peak Demand Reduction	<u>0.157</u> <u>0.203</u> kW	
Gas Consumption Increase	<u>16.58</u> <u>21.32</u> -MMBtu	
Measure Life	13 years	

Natural gas water heaters reduce electric energy and demand compared to heat pump water heaters. Standard heat pump water heaters have energy factors of 2.0 and a federal standard efficiency gas water heater has an energy factor of 0.594 for a 40gal unit.

2.19.1 Eligibility

This protocol documents the energy savings attributed to converting from a standard heat pump water heater with Energy Factor of 2.0 or greater to a standard natural gas water heater with Energy Factor of 0.594 or greater. The target sector primarily consists of single-family residences.

2.19.2 **Algorithms**

The energy savings calculation utilizes average performance data for available residential standard heat pump water heaters and natural gas water heaters and typical water usage for residential homes. Because there is little electric energy associated with a natural gas water heater, the energy savings are the full energy utilization of the heat pump water heater. The energy savings are obtained through the following formula:

$$\angle AkWh = \frac{\left\{ \left(\frac{1}{EF_{HP,bl} \times F_{Derate}} \right) \times \left(HW \times 365 \times 8.3 \frac{lb}{gal} \times (T_{hot} - T_{cold}) \right) \right\}}{3413 \frac{Btu}{kWh}}$$

Although there is a significant electric savings, there is an associated increase in natural gas energy consumption. While this gas consumption does not count against PA Act 129 energy savings, it is expected to be used in the program TRC test. The increased natural gas energy is obtained through the following formula:

Gas Consumption (MMBtu)
$$= \frac{\left\{ \left(\frac{1}{EF_{NG,inst}}\right) \times \left(HW \times 365 \times 8.3 \frac{lb}{gal} \times (T_{hot} - T_{cold})\right) \right\}}{1,000,000 \frac{Btu}{MMRtu}}$$

Demand savings result from the removal of the connected load of the heat pump water heater. The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage.

SECTION 2: Residential Measures

Demand Savings

=EnergyToDemandFactor

The Energy to Demand Factor is defined below:

EnergyToDemandFactor

= Average Usage_{Summer WD Noon-8} Annual Energy Usage

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from load shape data collected for a water heater and HVAC demand response study for PJM⁷³. The factor is constructed as follows:

- 1. Obtain the average kW, as monitored for 82 water heaters in PJM territory⁷⁴, for each hour of the typical day summer, winter, and spring/fall days. Weight the results (91 summer days, 91 winter days, and 183 spring/fall days) to obtain annual energy usage.
- 2. Obtain the average kW during noon to 8 PM on summer days from the same data.
- The average noon to 8 PM demand is converted to average weekday noon to 8 PM demand through comparison of weekday and weekend monitored loads from the same PJM study⁷⁵.
- 4. The ratio of the average weekday noon to 8 PM energy demand to the annual energy usage obtained in step 1. The resulting number, 0.00009172, is the *EnergyToDemandFactor*.

The load shapes (fractions of annual energy usage that occur within each hour) during summer week days are plotted in Figure 2-9.

⁷³ Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/working-groups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx

⁷⁴ The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32

⁷⁵ The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays.

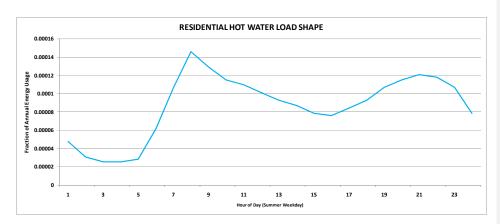


Figure 2-9: Load shapes for hot water in residential buildings taken from a PJM.

2.19.3 **Definition of Terms**

The parameters in the above equation are listed in <u>Table 2-31Table 2-31Table 2-29</u>.

Table 2-313129: Calculation Assumptions for Heat Pump Water Heater to Gas Water Heater

Component		Values	Source
EF _{HP,bl} , Energy Factor of baseline heat pump water heater	Fixed	≥ 2.0	4
EF _{NG,inst} . Energy Factor of installed natural gas water heater		≥ 0.594	5
HW, Hot water used per day in gallons	Fixed	50 64.3 gallon/day	6
T _{hot} , Temperature of hot water	Fixed	120 °F	7
T _{cold} , Temperature of cold water supply	Fixed	55 °F	8
F _{Derate} , COP De-rating factor	Fixed	0.84	9, and discussion below
EnergyToDemandFactor	Fixed	0.00009172	1-3

Sources:

- 1. Deemed Savings Estimates for Legacy Air Conditioning and Water Heating Direct Load Control Programs in PJM Region. The report can be accessed online: http://www.pjm.com/~/media/committees-groups/workinggroups/lrwg/20070301/20070301-pjm-deemed-savings-report.ashx
- 2. The average is over all 82 water heaters and over all summer, spring/fall, or winter days. The load shapes are taken from the fourth columns, labeled "Mean", in tables 14,15, and 16 in pages 5-31 and 5-32
- 3. The 5th column, labeled "Mean" of Table 18 in page 5-34 is used to derive an adjustment factor that scales average summer usage to summer weekday usage. The

conversion factor is 0.925844. A number smaller than one indicates that for residential homes, the hot water usage from noon to 8 PM is slightly higher is the weekends than on weekdays.

- 4. Heat pump water heater efficiencies have not been set in a Federal Standard. However, the Federal Standard for water heaters does refer to a baseline efficiency for heat pump water heaters as EF = 2.0 "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE-2006-BT-STD-0129.
- Federal Standards are 0.67 -0.0019 x Rated Storage in Gallons. For a 40-gallon tank this is 0.594. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE-2006-BT-STD-0129, p. 30
- "Energy Conservation Program for Consumer Products: Test Procedure for Water Heaters", Federal Register / Vol. 63, No. 90, p. 26005-26006,25996
- 7. Many states have plumbing codes that limit shower and bathtub water temperature to 120 °F.
- 8. Mid-Atlantic TRM, footnote #24

Based on TMY2 weather files from DOE2.com for Erie, Harrisburg, Pittsburgh, Wilkes-Barre, And Williamsport, the average annual wet bulb temperature is 45 ± 1.3 °F. The wet bulb temperature in garages or attics, where the heat pumps are likely to be installed, are likely to be two or three degrees higher, but for simplicity, 45 °F is assumed to be the annual average wet bulb temperature.

2.19.4 Heat Pump Water Heater Energy Factor

The Energy Factors are determined from a DOE testing procedure that is carried out at 56 °F wet bulb temperature. However, the average wet bulb temperature in PA is closer to 45 °F⁷⁶. The heat pump performance is temperature dependent. The plot in Figure 2-10 shows relative coefficient of performance (COP) compared to the COP at rated conditions⁷⁷. According to the linear regression shown on the plot, the COP of a heat pump water heater at 45 °F is 0.84 of the COP at nominal rating conditions. As such, a de-rating factor of 0.84 is applied to the nominal Energy Factor of the Heat Pump water heaters.

 $^{^{76}}$ Based on TMY2 weather files from DOE2.com for Erie, Harrisburg, Pittsburgh, Wilkes-Barre, And Williamsport, the average annual wetbulb temperature is 45 ± 1.3 °F. The wetbulb temperature in garages or attics, where the heat pumps are likely to be installed, are likely to be two or three degrees higher, but for simplicity, 45 °F is assumed to be the annual average wetbulb temperature.

 $^{^{77} \} The performance curve is adapted from \ Table 1 in \\ \underline{http://wescorhvac.com/HPWH\%20design\%20details.htm\#Single-stage\%20HPWHs}$

The performance curve depends on other factors, such as hot water set point. Our adjustment factor of 0.84 is a first order approximation based on the information available in literature.

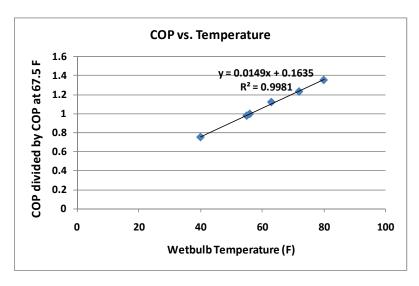


Figure 2-10: Dependence of COP on Outdoor Wet-Bulb Temperature

2.19.5 Deemed Savings

The deemed savings for the installation of a natural gas water heater in place of a standard heat pump water heater are listed in <u>Table 2-32Table 2-32Table 2-30</u> below.

Table 2-323230: Energy Savings and Demand Reductions for Heat Pump Water Heater to Gas Water Heater

	Energy Savings (kWh)	Demand Reduction (kW)
2.0	<u>1,717</u> 2208	<u>0157</u> 0.203

The deemed gas consumption for the installation of a standard efficiency natural gas water heater in place of a standard heat pump water heater is listed in <u>Table 2-33Table 2-31</u> below.

Table 2-333331: Gas Consumption for Heat Pump Water Heater to Gas Water Heater

Gas unit Energy Factor	Gas Consumption (MMBtu)	
0.594	<u>16.58</u> 21.32	

2.19.6 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources, a gas water heater's lifespan is 13 years^{78} .

2.19.7 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

⁷⁸ DEER values, updated October 10, 2008 http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

2.20 Fuel Switching: Electric Heat to Gas Heat

This protocol documents the energy savings attributed to converting from an existing electric heating system to a new natural gas furnace in a residential home. The target sector primarily consists of single-family residences.

The baseline for this measure is an existing residential home with an electric primary heating source. The heating source can be electric baseboards, electric furnace, or electric air source heat pump.

The retrofit condition for this measure is the installation of a new standard efficiency natural gas furnace.

2.20.1 Algorithms

The energy savings are the full energy consumption of the electric heating source minus the energy consumption of the gas furnace blower motor. The energy savings are obtained through the following formulas:

Heating savings with electric baseboards or electric furnace (assumes 100% efficiency): Energy Impact:

$$\Delta kWh_{elec\,heat} = \frac{CAPY_{elec\,heat} \times EFLH_{heat}}{3412 \frac{Btu}{kWh}} - \frac{HP_{motor} \times \left(746 \frac{W}{HP}\right) \times EFLH_{heat}}{\eta_{motor} \times 1000 \frac{W}{kW}}$$

Heating savings with electric air source heat pump:

Energy Impact:

There are no peak demand savings as it is a heating only measure.

Although there is a significant electric savings, there is also an associated increase in natural gas energy consumption. While this gas consumption does not count against PA Act 129 energy savings, it is expected to be used in the program TRC test. The increased natural gas energy is obtained through the following formulas:

Gas consumption with natural gas furnace

Gas Consumption (MMBtu)
$$= \frac{CAPY_{Gas\ heat} \times EFLH_{heat}}{AFUE_{Gas\ heat} \times 1,000,000 \frac{Btu}{MMBtu}}$$

2.20.2 Definition of Terms

CAPY_{elec heat} = Total heating capacity of existing electric baseboards or

electric furnace (BtuH)

CAPY_{ASHP heat} = Total heating capacity of existing electric ASHP (BtuH)

CAPY_{Gas heat} = Total heating capacity of new natural gas furnace (BtuH)

EFLH_{heat} = Equivalent Full Load Heating hours

HSPF_{ASHP} = Heating Seasonal Performance Factor for existing heat pump

(Btu/W•hr)

AFUE_{Gas heat} = Annual Fuel Utilization Efficiency for the new gas furnace (%)

 HP_{motor} = Gas furnace blower motor horsepower (hp)

 η_{motor} = Efficiency of furnace blower motor

The default values for each term are shown in <u>Table 2-34Table 2-34Table 2-32</u>.

Table 2-343432: Default values for algorithm terms, Fuel Switching, Electric Heat to Gas Heat

Term	Туре	Value	Source
CAPY _{elec heat}	Variable	Nameplate	EDC Data Gathering
CAPY _{ASHP heat}	Variable	Nameplate	EDC Data Gathering
CAPY _{Gas heat}	Variable	Nameplate	EDC Data Gathering
EFLH _{heat}	<u>Default</u> Fixed	Allentown = 1,193,2492 Erie = 1,349,2901 Harrisburg = 1,103,2374 Philadelphia = 1,060,2328 Pittsburgh = 1,209,2380 Scranton = 1,296,2532 Williamsport = 1,251,2502	2010-2012 PA TRM Table 2-1, in Electric HVAC section
	<u>Optional</u>	An EDC can estimate it's own EFLH based on customer billing data analysis.	EDC Data Gathering
ASTIR TELESTO		Default = 7.7	2010 PA TRM Table 2-1
		Nameplate	EDC Data Gathering
AFUE _{Gas heat}	Variable	Default = 78%	IECC 2009 minimum efficiency
		Nameplate	EDC Data Gathering
HP _{motor}	Variable	Default = ½ hp	Average blower motor capacity for gas furnace (typical range = 1/4 hp to 3/4 hp)
		Nameplate	EDC Data Gathering
η _{motor}	Variable	Default = 0.50	Typical efficiency of ½ hp blower motor
		Nameplate	EDC Data Gathering

2.20.3 Measure Life

Measure life = 20 years⁷⁹

 $^{^{79}}$ PA 2010 TRM Appendix A: Measure Lives. Note that PA Act 129 savings can be claimed for no more than 15 years.

2.21 Ceiling / Attic and Wall Insulation

This measure applies to installation/retrofit of new or additional insulation in a ceiling/attic, or walls of existing residential homes with a primary electric heating and/or cooling source. The installation must achieve a finished ceiling/attic insulation rating of R-38 or higher, and/or must add wall insulation of at least an R-6 or greater rating.

Technical Reference Manual

The baseline for this measure is an existing residential home with a ceiling/attic insulation R-value less than or equal to R-30, and wall insulation R-value less than or equal to R-11, with an electric primary heating source and/or cooling source.

2.21.1 Algorithms

The savings values are based on the following algorithms.

Cooling savings with central A/C:

$$\Delta kWh_{CAC} = \frac{CDD \times 24 \frac{hr}{day} \times DUA}{SEER_{CAC} \times 1000 \frac{W}{kW}} \times \left[A_{roof} \left(\frac{1}{R_{roof,bl}} - \frac{1}{R_{roof,ee}} \right) + A_{wall} \left(\frac{1}{R_{wall,bl}} - \frac{1}{R_{wall,ee}} \right) \right]$$

$$\Delta kW_{peak\text{-CAC}} = \frac{\Delta kWh_{CAC}}{EFLH_{cool}} \times CF_{CAC}$$

Cooling savings with room A/C:

$$\Delta kWh_{RAC} = \frac{CDD \times 24 \frac{hr}{day} \times DUA \times F_{Room AC}}{\overline{EER}_{RAC} \times 1000 \frac{W}{kW}} \times \left[A_{roof} \left(\frac{1}{R_{roof,bl}} - \frac{1}{R_{roof,ee}} \right) + A_{wall} \left(\frac{1}{R_{wall,bl}} - \frac{1}{R_{wall,ee}} \right) \right]$$

$$\Delta kW_{peak-RAC} = \frac{\Delta kWh_{RAC}}{\overline{EFLH_{root,RAC}}} \times CF_{RAC}$$

Cooling savings with electric air-to-air heat pump:

$$\Delta kWh_{ASHP\;cool} = \frac{CDD \times 24 \frac{hr}{day} \times DUA}{SEER_{ASHP} \times 1000 \frac{W}{kW}} \times \left[A_{roof} \left(\frac{1}{R_{roof,bl}} - \frac{1}{R_{roof,ee}} \right) + A_{wall} \left(\frac{1}{R_{wall,bl}} - \frac{1}{R_{wall,ee}} \right) \right]$$

$$\Delta kW_{peak\text{-}ASHP\;cool} = \frac{\Delta kWh_{ASHP\;cool}}{EFLH_{cool}} \times CF_{ASHP}$$

Heating savings with electric air-to-air heat pump:

$$\Delta kWh_{ASHP\ heat} = \frac{HDD \times 24 \frac{hr}{day}}{HSPF_{ASHP} \times 1000 \frac{W}{kW}} \times \left[A_{roof} \left(\frac{1}{R_{roof,bl}} - \frac{1}{R_{roof,ee}} \right) + A_{wall} \left(\frac{1}{R_{wall,bl}} - \frac{1}{R_{wall,ee}} \right) \right]$$

$$\Delta kW_{peak\text{-}ASHP\ heat} = 0$$

Heating savings with electric baseboard or electric furnace heat (assumes 100% efficiency):

$$\Delta kWh_{elec\;heat} = \frac{HDD \times 24 \frac{hr}{day}}{3412 \frac{Btu}{kWh}} \times \left[A_{roof} \left(\frac{1}{R_{roof,bl}} - \frac{1}{R_{roof,ee}} \right) + A_{wall} \left(\frac{1}{R_{wall,bl}} - \frac{1}{R_{wall,ee}} \right) \right]$$

 $\Delta kW_{peak\text{-elec heat}} = 0$

2.21.2 Definition of Terms

CDD = Cooling Degree Days (Degrees F * Days)

HDD = Heating Degree Days (Degrees F * Days)

DUA = Discretionary Use Adjustment to account for the fact that

people do not always operate their air conditioning system when

the outside temperature is greater than 65F.

 A_{roof} = Area of the ceiling/attic with upgraded insulation (ft²)

 A_{wall} = Area of the wall with upgraded insulation (ft²)

 $R_{\text{roof,bl}}$ = Assembly R-value of ceiling/attic before retrofit (ft²*°F*hr/Btu)

 $R_{\text{roof,ee}}$ = Assembly R-value of ceiling/attic after retrofit ($ft^2*^\circ F^*hr/Btu$)

 $R_{\text{wall.bl}}$ = Assembly R-value of wall before retrofit ($ft^2*\circ F*hr/Btu$)

 $R_{\text{wall,ee}}$ = Assembly R-value of wall after retrofit (ft²*°F*hr/Btu)

SEER_{CAC} = Seasonal Energy Efficiency Ratio of existing home central air

conditioner (Btu/W•hr)

 $\overline{\text{EER}}_{RAC}$ = Average Energy Efficiency Ratio of existing room air

conditioner (Btu/W•hr)

SEER_{ASHP} = Seasonal Energy Efficiency Ratio of existing home air source

heat pump (Btu/W•hr)

HSPF_{ASHP} = Heating Seasonal Performance Factor for existing home heat

pump (Btu/W•hr)

 CF_{CAC} = Demand Coincidence Factor (See Section 1.4) for central AC

systems

 CF_{RAC} = Demand Coincidence Factor (See Section 1.4) for Room AC

systems

CF_{ASHP} = Demand Coincidence Factor (See Section 1.4) for ASHP

systems

EFLH_{cool} = Equivalent Full Load Cooling hours for Central AC and ASHP

 $EFLH_{cool RAC}$ = Equivalent Full Load Cooling hours for Room AC

F_{Room AC} = Adjustment factor to relate insulated area to area served by Room AC units

The default values for each term are shown in <u>Table 2-35Table 2-35</u>Table 2-33. The default values for heating and cooling days and hours are given in <u>Table 2-36Table 2-36Table 2-36Table 2-34</u>.

Table 2-353533: Default values for algorithm terms, Ceiling/Attic and Wall Insulation

Term	Туре	Value	Source
A _{roof}	Variable	Varies	EDC Data Gathering
A _{wall}	Variable	Varies	EDC Data Gathering
DUA	Fixed	0.75	OH TRM ⁸⁰
R _{roof,bl} ⁸¹	Variable	5	Un-insulated attic
		16	4.5" (R-13) of existing attic insulation
		22	6" (R-19) of existing attic insulation
		30	10" (R-30) of existing attic insulation
R _{roof,ee} ⁸²	Variable	38	Retrofit to R-38 total attic insulation
		49	Retrofit to R-49 total attic insulation
R _{wall,bl} ⁸³	Variable	Default = 3.0	Assumes existing, un-insulated wall with 2x4 studs @ 16" o.c., w/ wood/vinyl siding
		Existing Assembly R-value	EDC Data Gathering
R _{wall,ee} ⁸⁴	Variable	Default = 9.0	Assumes adding R-6 per DOE recommendations ⁸⁵
		Retrofit Assembly R-value	EDC Data Gathering

http://www.energystar.gov/index.cfm?c=home_sealing.hm_improvement_insulation_table

⁸⁰ "State of Ohio Energy Efficiency Technical Reference Manual," prepared for the Public Utilities Commission of Ohio by Vermont Energy Investment Corporation. August 6, 2010.

⁸¹ Used eQuest 3.64 to derive roof assembly R-values. When insulation is added between the joists as in most insulation up to R-30 (10"), the assembly R-value is based on a parallel heat transfer calculation of the insulation and joists, rather than a series heat transfer.

⁸² Generally as insulation is added beyond R-30 (10"), the insulation has cleared the joists and the R-value of the insulation above the joists can be added as a series heat transfer rather than a parallel heat transfer condition. Therefore, above R-30 insulation levels, the additional R-value can be added directly to the assembly value of R-30 insulation.

⁸³ Used eQuest 6.64 to derive wall assembly R-values.

⁸⁴ Used eQuest 6.64 to derive wall assembly R-values. It is coincidence that adding R-6 to a 2x4 stud wall essentially yields R-9 assembly value even though this was done using a parallel heat transfer calculation. This was due to rounding. The defaults are based on conservative assumptions of wall construction.

⁸⁵ DOE recommendation on ENERGY STAR website for adding wall insulation to existing homes in Zones 5-8. Insulation may be loose fill in stud cavities or board insulation beneath siding.

Term	Туре	Value	Source
SEER _{CAC} Variable		Default for equipment installed before 1/23/2006 = 10	Minimum Federal Standard for new Central Air Conditioners/Heat Pumps between 1990 and 2006
		Default for equipment installed after 1/23/2006 = 13	ASHRAE 90.1-2007
		Nameplate	EDC Data Gathering
EER _{RAC}	Variable	Default = 9.8	DOE Federal Test Procedure 10 CFR 430, Appendix F (Used in ES Calculator for baseline)
		Nameplate	EDC Data Gathering
SEERASHP	Variable	Default for equipment installed before 1/23/2006 = 10	Minimum Federal Standard for new Central Air Conditioners/Heat Pumps between 1990 and 2006
		Default for equipment installed after 1/23/2006 = 13	ASHRAE 90.1-2007
		Nameplate	EDC Data Gathering
HSPF _{ASHP}	Variable	Default for equipment installed before 1/23/2006 = 6.8	Minimum Federal Standard for new Central Air Conditioners/Heat Pumps between 1990 and 2006
		Default for equipment installed after 1/23/2006 = 7.7	ASHRAE 90.1-2007
		Nameplate	EDC Data Gathering
CF _{CAC}	Fixed	0.70	Table 2-1
CF _{RAC}	Fixed	0.58	Table 2-41See Section 2.29
CF _{ASHP}	Fixed	0.70	Table 2-1
F _{Room,AC}	Fixed	0.38	Calculated ⁸⁶

 $^{^{86}}$ From PECO baseline study, average home size = 2323 ft², average number of room AC units per home = 2.1. Average Room AC capacity = 10,000 BtuH per ENERGY STAR Room AC Calculator, which serves 425 ft² (average between 400 and 450 ft² for 10,000 BtuH unit per ENERGY STAR Room AC sizing chart). F_{Room,AC} = (425 ft² * 2.1)/(2323 ft²) = 0.38

Table 2-363634: EFLH, CDD and HDD by City

City	EFLH _{cool} (Hours) ⁸⁷	EFLH _{cool RAC} (Hours) ⁸⁸	CDD (Base 65) ⁸⁹	HDD (Base 65) ⁹⁰
Allentown	<u>487</u> 784	243	787	5830
Erie	<u>389</u> 482	149	620	6243
Harrisburg	<u>551</u> 929	288	955	5201
Philadelphia	<u>591</u> 1032	320	1235	4759
Pittsburgh	<u>432</u> 737	228	726	5829
Scranton	<u>417</u> 621	193	611	6234
Williamsport	<u>422</u> 659	204	709	6063

2.21.3 Measure Life

Measure life = 25 years⁹¹.

⁸⁷ PA TRM Table 2-1.

⁸⁸ PA TRM Section 2.12 Room AC Retirement SWE Interim Approved TRM Protocol — Residential Room AC Retirement

⁸⁹ Climatography of the United States No. 81. Monthly Station Normals of Temperature, Precipitation, and Heating and Cooling Degree Days 1971-2000, 36 Pennsylvania. NOAA. http://cdo.ncdc.noaa.gov/climatenormals/clim81/PAnorm.pdf
⁹⁰ Ibid.

⁹¹ Massachusetts Statewide Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, Version 1.0, accessed August 2010 at http://www.ma-eeac.org/docs/091023-MA-TRMdraft.pdf. Note that PA Act 129 savings can be claimed for no more than 15 years.

2.22 Refrigerator / Freezer Recycling with and without Replacement

Measure Name	Refrigerator/Freezer Recycling and Replacement
Target Sector	Residential Establishments
Measure Unit	Refrigerator or Freezer
Deemed Unit Annual Energy Savings- Refrigerators	937 kWh (no replacement) 533 kWh (Replace with ENERGY STAR Unit) 417 kWh (Replace with non-ENERGY STAR Unit)
Deemed Unit Peak Demand Reduction- Refrigerators	0.116 kW (no replacement) 0.066 kW (Replace with ENERGY STAR Unit) 0.052 kW (Replace with non-ENERGY STAR Unit)
Deemed Unit Annual Energy Savings- Freezers	1170 kWh (no replacement) 753 kWh (Replace with ENERGY STAR Unit) 667 kWh (Replace with non-ENERGY STAR Unit)
Deemed Unit Peak Demand Reduction- Freezers	0.145 kW (no replacement) 0.093 kW (Replace with ENERGY STAR Unit) 0.083 kW (Replace with non-ENERGY STAR Unit)
Measure Life (no replacement)	8 years 92
Measure Life (with replacement)	7 years (see measure life discussion below)

This measure is (1) the retirement of a refrigerator or freezer with no replacement or (2) the recycling and replacement before end of life of an existing refrigerator or freezer with a new refrigerator or freezer. This protocol quantifies savings where the replacement refrigerator or freezer is ENERGY STAR and non-ENERGY STAR qualified. This protocol applies to both residential and non-residential sectors, as refrigerator and freezer usage and energy usage are assumed to be independent of customer rate class⁹³. The deemed savings value is based on regression analysis of metered data on kWh consumption from other States. The deemed savings values for this measure can be applied to refrigerator and freezer retirements or early replacements meeting the following criteria:

- 1. Existing, working refrigerator or freezer 10-30 cubic feet in size (savings do not apply if unit is not working)
- 2. Unit is a primary or secondary unit

2.22.1 Algorithms

Equation 1:

⁹² Vermont Energy Investment Corporation (VEIC) for NEEP, Mid Atlantic TRM Version 2.0. July 2011. Pg.36.

⁹³ For example, non-residential rate class usage cases include residential dwellings that are master-metered, usage in offices or any other applications that involve typical refrigerator usage.

GROSSDEEMED kWhsaved Per Unit = EXISTING UEC * PART USE

Equation 2:

NET_kWhsaved Per Unit = GressDEEMED kWhsaved Per Unit* - (REPLACEMENTUEC * PART_USE)

2.22.2 Definition of Terms

GROSSDEEMED_kWhsaved	= Annual electricity savings measured in kilowatt hours.
EXISTING_UEC	= The average annual unit energy consumption of participating refrigerators. The PY3 value is 967 for refrigerators and 1188 for freezers.
PART_USE	= The portion of the year the average refrigerator or freezer would likely have operated if not recycled through the program. For PY3, the average refrigerator was plugged in 96.9% of the

REPLACEMENTUEC = The annual unit energy consumption of the average
replacement unit. This comes from the Energy Star calculator
and is equal to 417 kWh for a new Energy Star refrigerator, and
537 for a new non Energy Star refrigerator. It is equal to 423
kWh for a new Energy Star freezer, and 510 for a new non
Energy Star freezer.

year and the average freezer was plugged in 98.5% of the year.

2.22.3 Deemed Savings Calculations

For removed refrigerators, the annual Unit Energy Consumption (UEC) is based upon a regression analysis of data from 452 refrigerators metered and recycled through five utilities:

Existing Refrigerator UEC

- = 365.25 * (0.487 + 0.015 * (26.617 years) + 0.782
- *(65.8% manufactured before 1990) + 0.084*(17.870 cubic feet) 1.442
- * (9.25% single door units) + 1.090 * (16.1% side by side) + 0.544
- * (22.6% primary usage) + 0.02 * (3.347 unconditioned space CDDs) 0.045
- *(10.791 unconditioned HDDs)) = 967 kWh

Source for refrigerator UEC equation: US DOE Uniform Method Project, Savings Protocol for Refrigerator Retirement.

No Replacement:

GROSSDEEMED kWhsaved Per Unit = EXISTING UEC * PART USE = 938 kWh

Replacement with Energy Star Unit:

NET_kWhsaved Per Unit = GROSSDEEMED kWhsaved Per Unit → (REPLACEMENTUEC
* PART_USE) = 533 kWh

Replacement with non-Energy Star Unit:

NET_kWhsaved Per Unit = GROSSDEEMED kWhsaved Per Unit* - (REPLACEMENTUEC * PART_USE) = 417 kWh

Existing Freezer UEC

- = 365.25 days
- *(-2.297 + 0.067 * [31.300 years old] + 0.401
- $*[81.8\% \ units \ manufactured \ pre-1993] + 0.150 * [16.030 \ cubic \ feet] + 0.854$
- * [35% units that are chest freezers] + 0.1046 * [4.010 CDDs]) = 1188 kWh

Source for freezer UEC equation: Cadmus memo to Michigan Service Commission (August 2012)

No Replacement:

GROSSDEEMED kWhsaved Per Unit = EXISTING UEC * PART USE =1170 kWh

Replacement with Energy Star Unit:

NET_kWhsaved Per Unit = DEEMEDGROSS kWhsaved Per Unit* - (REPLACEMENTUEC * PART_USE) = 753 kWh

Replacement with non-Energy Star Unit:

NET_kWhsaved Per Unit = DEEMEDGROSS kWhsaved Per Unit* - (REPLACEMENTUEC * PART_USE) = 667 kWh

The Commission has computed the values that are needed for input to the regressions equation based on Act 129 Program Year 3 data for removed refrigerators and freezers. Once these input values were determined, they were substituted into the above equation in order to estimate the UEC for removed refrigerators and freezers. Error! Not a valid bookmark self-reference. Table 2-37 and Table 2-38 below provides the equation inputs needed to calculate the UEC for removed refrigerators and freezers respectively. Error! Not a valid bookmark self-reference. Table 2-37 and Table 2-38 below shows the average values for each independent variable based upon the entire fleet of refrigerators and freezers respectively (for all seven Pennsylvania investor-owned utilities) removed during Act 129 Program Year 3.

<u>Table 2-37: Refrigerator Per Unit "GrossDeemed" Energy Consumption Calculation Using Regression Model</u> and Program Values (Program values obtained from PY3 data from the seven Act 129 EDCs)

Independent Variable	Estimate Coefficient (Daily kWh)	Program Values Based on PY3 data (Average/Proportion)
Intercept	0.487	
Appliance Age (years)	<u>0.015</u>	<u>26.617</u>

Field Code Changed

Field Code Changed

SECTION 2: Residential Measures

Dummy: Manufactured Pre-1990	0.782	<u>65.75%</u>
Appliance Size (square feet)	0.084	<u>17.87</u>
Dummy: Single Door Configuration	<u>-1.442</u>	<u>9.25%</u>
Dummy: Side-by-Side Configuration	1.090	<u>16.09%</u>
Dummy: Primary Usage Type (in absence of the program)	<u>0.544</u>	<u>22.55%</u>
Proportion of refrigerators in unconditioned space		<u>83.46%</u>
Interaction: Located in Unconditioned Space for x CDDs	0.020	<u>4.01</u>
Interaction: Located in Unconditioned Space for × HDDs	<u>-0.045</u>	<u>12.93</u>
Estimated UEC (kWh/Year)		<u>967.93</u>
Part Use Factor Based on Program Year 3 Data		<u>96.9%</u>
Adjusted kWh per year (part use factor times UEC)		<u>937</u>

<u>Table 2-38: Freezer Per Unit "Gross Deemed" Energy Consumption Calculation Using Regression Model and Program Values (Program values obtained from PY3 data from the seven Act 129 EDCs)</u>

Independent Variables	Coefficient	Program Values Based on PY3 data (Average/Proportion)
Intercept	<u>-2.297</u>	=
Age (years)	0.067	<u>31.30</u>

Dummy: Manufactured Pre-1993	<u>0.401</u>	<u>81.82%</u>
Size (cubic feet)	<u>0.15</u>	<u>16.03</u>
Dummy: Chest	<u>0.854</u>	<u>35.01%</u>
<u>CDDs</u>	<u>0.1046</u>	4.01
Estimated UEC (kWh/Year)		<u>1187.65</u>
Part Use Factor Based on Program Year 3 Data		<u>98.5%</u>
Adjusted kWh per year (part use factor times UEC)		<u>1170</u>

When calculating gross-deemed per unit kWh savings for a removed refrigerator or freezer, it is necessary to calculate and apply a "Part-Use" factor. "Part-use" is an appliance recycling-specific adjustment factor used to convert the UEC (determined through the methods detailed above) into an average per-unit gross-deemed savings value. The UEC itself is not equal to the gross-deemed savings value, because: (1) the UEC model yields an estimate of annual consumption, and (2) not all recycled refrigerators and freezers would have operated year-round had they not been decommissioned through the program.

In Program Year 3, the Commission determined that the average removed refrigerator was plugged in and used 96.9% of the year and the average freezer was plugged in and used 98.5% of the year. Thus, the deemed value for the part-use factor is 96.9% (and 98.5%) based on program year 3 data for all EDCs. EDCs may elect to calculate an EDC specific part-use factor. In the event an EDC desires to calculate an EDC specific part-use factor, EDCs should use the following methodology. Using participant surveys, evaluators should determine the amount of time a removed refrigerator is plugged in.

<u>Table 2-39</u> and <u>Table 2-40</u> below shows the basis for the calculation of per unit savings for units that are removed but then replaced.

Table 2-39: Refrigerator Per Unit "Net" Energy Consumption Calculation Using Equation #2 (adjusts for units that are removed but then replaced)

<u>Variable</u>	<u>Value</u>
GrossDeemed kWh Saved per unit	<u>937</u>

SECTION 2: Residential Measures

Refrigerator / Freezer Recycling with and without Replacement

Field Code Changed
Field Code Changed

Replacement unit energy consumption (UEC for new Energy Star unit)	<u>417</u>
Replacement unit energy consumption (UEC for new non Energy Star unit))	<u>537</u>
Part use factor	<u>96.9%</u>
Refrigerator Per Unit Net savings if replaced with Energy Star unit =	<u>533</u>
Refrigerator Per Unit Net savings if replaced with non Energy Star unit =	<u>417</u>

Table 2-40: Freezer Per Unit "Net" Energy Consumption Calculation Using Equation #2 (adjusts for units that are removed but then replaced)

<u>Variable</u>	<u>Value</u>	<u>Source</u>
GrossDeemed kWh Saved per unit	<u>1170</u>	Calculation
Replacement unit energy consumption (UEC for new Energy Star unit)	<u>423</u>	Energy Star Calculator
Replacement unit energy consumption (UEC for new non Energy Star unit))	<u>510</u>	Energy Star Calculator
Part use factor	<u>98.5%</u>	JACO Appliance Recycling Program Database for PY3
Freezer Per Unit Net savings if replaced with Energy Star unit =	<u>753</u>	Calculation
Freezer Per Unit Net savings if replaced with non Energy Star unit =	<u>667</u>	Calculation

Per unit kW demand savings are based upon annual hours of use of 5,000 and a peak coincidence factor of 62%.

2.22.4 Measure Life

Refrigerator/Freezer Replacement programs: Measure Life = 7 yrs

Measure Life Rationale

The 2010 PA TRM specifies a Measure Life of 13 years for refrigerator replacement and 8 years for refrigerator retirement (Appendix A). It is assumed that the TRM listed measure life is either an Effective Useful Life (EUL) or Remaining Useful Life (RUL), as appropriate to the measure. Survey results from a study of the low-income program for SDG&E (2006)⁹⁴ found that among the program's target population, refrigerators are likely to be replaced less frequently than among average customers. Southern California Edison uses an EUL of 18 years for its Low-Income Refrigerator Replacement measure which reflects the less frequent replacement cycle among low-income households. The PA TRM limits measure savings to a maximum of 15 yrs.

Due to the nature of a Refrigerator/Freezer Early Replacement Program, measure savings should be calculated over the life of the ENERGY STAR replacement unit. These savings should be calculated over two periods, the RUL of the existing unit, and the remainder of the measure life beyond the RUL. For the RUL of the existing unit, the energy savings would be equal to the full savings difference between the existing baseline unit and the ENERGY STAR unit, and for the remainder of the measure life the savings would be equal to the difference between a Federal Standard unit and the ENERGY STAR unit. The RUL can be assumed to be 1/3 of the measure EUL.

As an example, Low-Income programs use a measure life of 18 years and an RUL of 6 yrs (1/3*18). The measure savings for the RUL of 6 yrs would be equal to the full savings. The savings for the remainder of 12 years would reflect savings from normal replacement of an ENERGY STAR refrigerator over a Federal Standard baseline, as defined in the TRM.

Example Measure savings over lifetime

= 1205 kWh/yr * 6 yrs + 100 kWh/yr (ES side mount freezer w/door ice) * 12 yrs = 8430 kWh/measure lifetime

For non-Low-Income specific programs, the measure life would be 13 years and an RUL of 4 yrs (1/3*13). The measure savings for the RUL of 4 yrs would be equal to the full savings. The savings for the remainder of 9 years would reflect savings from normal replacement of an ENERGY STAR refrigerator over a Federal Standard baseline, as defined in the TRM.

Example Measure savings over lifetime

= 1205 kWh/yr * 4 yrs + 100 kWh/yr (ES side mount freezer w/door ice) * 9 yrs = 5720 kWh/measure lifetime

To simplify the programs and remove the need to calculate two different savings, a compromise value for measure life of 7 years for both Low-Income specific and non-Low Income specific programs can be used with full savings over this entire period. This provides an equivalent savings as the Low-Income specific dual period methodology for an EUL of 18 yrs and a RUL of 6 yrs.

⁹⁴ 2004 - 2005 Final Report: A Measurement and Evaluation Study of the 2004-2005 Limited Income Refrigerator Replacement & Lighting Program, Prepared for: San Diego Gas & Electric, July 31, 2006

Example Measure savings over lifetime

= 1205 kWh/yr * 7 yrs = 8435 kWh/measure lifetime

Sources:

- U.S. Department of Energy, draft Uniform Methods Project protocol titled "Refrigerator Recycling Evaluation Protocol", prepared by Doug Bruchs of the Cadmus Group, July 2012
- 2. Cadmus Memo August 20, 2012 Technical Memo from the Cadmus Group to the Michigan Evaluation Working Group on the topic of Appliance Recycling Measure Savings Study. This memo summarizes research on the energy savings of recycled refrigerators and freezers conducted by The Cadmus Group, Inc. and Opinion Dynamics (together known as the evaluation team) on behalf Consumers Energy (Consumers) and DTE Energy (DTE). This memo provides an overview of the research conducted and Cadmus' recommendations for deemed per-unit energy and demand savings values for affected measures in the Michigan Energy Measures Database (MEMD).
- 3. 2009-2010 Pacific Power/Rocky Mountain Power Impact Evaluations PacifiCorp has impact evaluations for CA, ID, UT, WA, and WY that contain an earlier version of the multi-state Appliance Recycling Program regression models for both refrigerators and freezers. The Statewide Evaluator reviewed the report for the State of Washington, but all states include the same models and are publicly available online. The model coefficients can be found on pages 16 and 17 of the Washington document.

 http://www.pacificorp.com/content/dam/pacificorp/doc/Energy_Sources/Demand_Side_M anagement/WA_2011_SYLR_Final_Report.pdf
- 4. 2010 Ontario Power Authority Impact Evaluation This evaluation report contains a regression equation for annual consumption for refrigerators only (the freezer sample was too small). That equation can be found on page 10 of the OPA evaluation report.
 See
 - http://www.powerauthority.on.ca/sites/default/files/new_files/2010/2010%20Residential%20Great%20Refrigerator%20Roundup%20Program%20Evaluation.pdf
- Efficiency Vermont; Technical Reference User Manual (TRM). 2008. TRM User Manual No. 2008-53. Burlington, VT 05401. July 18, 2008.
- 6. Mid Atlantic TRM Version 2.0. July 2011. Prepared by Vermont Energy Investment Corporation. Facilitated and managed by Northeast Energy Efficiency Partnerships.

Table 2-36Table 2-37Table 2-38Table 2-39

2.22 Refrigerator / Freezer Recycling and Replacement

Measure Name	Refrigerator/Freezer Recycling and Replacement
Target Sector	Residential Establishments
Measure Unit	Refrigerator or Freezer
Unit Annual Energy Savings	1205 kWh (Replace with ENERGY STAR Unit) 1091 kWh (Replace with non-ENERGY STAR Unit)
Unit Peak Demand Reduction	0.1494kW (Replace with ENERGY STAR Unit) 0.135 kW (Replace with non-ENERGY STAR Unit)
Measure Life	7 years

This measure is the recycling and replacement before end of life of an existing refrigerator or freezer with a new refrigerator or freezer. This protocol quantifies savings where the replacement refrigerator or freezer is ENERGY STAR and non-ENERGY STAR qualified. This protocol applies to both residential and non-residential sectors, as refrigerator usage and energy usage are assumed to be independent of customer rate class 95 .

The deemed savings values for this measure can be applied to refrigerator and freezer early replacements meeting the following criteria:

- 1. Existing, working refrigerator or freezer 10-30 cubic feet in size (savings do not apply if unit is not working)
- 1. Unit is a primary or secondary unit

2.22.1 Algorithms

The deemed savings values are based on the following algorithms:

<u> ΔkWh</u> = kWh_{Recycled} - kWh_{Replacement} = ΔkWh/HOURS_{RefRept} * CF_{RefRept} ∆kW_{peak}—

2.22.2 Definition of Terms

The energy and demand savings shall be:

= Annual energy consumption of the recycled appliance ____= Annual energy consumption of the replacement appliance = Average annual run hours HOURS_{RefRept}

⁹⁵ For example, non-residential rate class usage cases include residential dwellings that are master metered, usage inoffices or any other applications that involve typical refrigerator usage.

— CF_{RefRepi} = Demand Coincidence Factor (See Section 1.4)

Term	Type	Value	Source
kWh _{Recycled}	Fixed	1,659-kWh	4
kWh _{Replacement}	Fixed	ENERGY STAR unit: 454 kWh Non-ENERGY STAR unit: 568 kWh	2
HOURS _{RefRepl}	Fixed	5,000	3 and 4
CF _{RefRepl}	Fixed	0.620	4

Sources:

- 1. Energy Star Refrigerator Retirement Calculator, accessed 09/01/2011 at http://www.energystar.gov/index.efm?fuseaction=refrig.calculator. The combined-average refrigerator and freezer annual kWh consumption for Pennsylvania is based-upon the data contained in the PA EDC appliance recycling contractor (JACO) databases. Because the manufacturer annual kWh consumption data was recorded inless than 50% of appliance collections, it was not used to calculate an average. SWE-utilized the recorded year of manufacture in the "JACO Databases" and the annual kWh consumption data by size and age contained in the ENERGY STAR Refrigerator-Retirement Calculator. This value is subject to change based on further analysis of other evaluation reports on appliance recycling programs across the nation.
- Energy Star Refrigerator Savings Calculator, accessed 09/01/2011 at http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Refrig_Sav_Calc.xls. Values represent average energy consumption of all-refrigerator configurations listed in the calculator based on default volume of 25.8 ft³ and federal minimum standards for non-ENERGY STAR units and ENERGY STAR standards for ENERGY STAR units.
- Efficiency Vermont; Technical Reference User Manual (TRM). 2008. TRM User Manual No. 2008-53. Burlington, VT 05401. July 18, 2008.
- 3. Mid Atlantic TRM Version 1.0. May 2010. Prepared by Vermont Energy Investment Corporation. Facilitated and managed by Northeast Energy Efficiency Partnerships.

Table 2-35: Refrigerator/Freezer Recycling and Replacement Default Savings

Туре	kWh _{Recycled}	kWh _{Replacement}	<u>ΔkWh</u>	∆kW _{peak}
Appliance Replaced with ENERGY STAR Unit	1,659	454	1,205	0.149
Appliance Replaced with non-ENERGY Star Unit	1,659	568	1,091	0.135

2.22.3 Measure Life

Refrigerator/Freezer Replacement programs: Measure Life = 7 yrs

Measure Life Rationale

The 2010 PA TRM specifies a Measure Life of 13 years for refrigerator replacement and 8 years for refrigerator retirement (Appendix A). It is assumed that the TRM listed measure life is either an Effective Useful Life (EUL) or Remaining Useful Life (RUL), as appropriate to the measure. Survey results from a study of the low-income program for SDG&E (2006)⁹⁶ found that among the program's target population, refrigerators are likely to be replaced less frequently than among average customers. Southern California Edison uses an EUL of 18 years for its Low-Income-Refrigerator Replacement measure which reflects the less frequent replacement cycle among low-income households. The PA TRM limits measure savings to a maximum of 15 yrs.

Due to the nature of a Refrigerator/Freezer Early Replacement Program, measure savings should-be calculated over the life of the ENERGY STAR replacement unit. These savings should be calculated over two periods, the RUL of the existing unit, and the remainder of the measure life-beyond the RUL. For the RUL of the existing unit, the energy savings would be equal to the full-savings difference between the existing baseline unit and the ENERGY STAR unit, and for the remainder of the measure life the savings would be equal to the difference between a Federal-Standard unit and the ENERGY STAR unit. The RUL can be assumed to be 1/3 of the measure EUL.

As an example, Low-Income programs use a measure life of 18 years and an RUL of 6 yrs (1/3*18). The measure savings for the RUL of 6 yrs would be equal to the full savings. The savings for the remainder of 12 years would reflect savings from normal replacement of an ENERGY STAR-refrigerator over a Federal Standard baseline, as defined in the TRM.

Example Measure savings over lifetime

```
= 1205 kWh/yr * 6 yrs + 100 kWh/yr (ES side mount freezer w/door ice) * 12 yrs = 8430 kWh/measure lifetime
```

For non-Low-Income specific programs, the measure life would be 13 years and an RUL of 4 yrs (1/3*13). The measure savings for the RUL of 4 yrs would be equal to the full savings. The savings for the remainder of 9 years would reflect savings from normal replacement of an ENERGY STAR refrigerator over a Federal Standard baseline, as defined in the TRM.

Example Measure savings over lifetime

```
= 1205 kWh/yr * 4 yrs + 100 kWh/yr (ES side mount freezer w/door ice) * 9 yrs = 5720 kWh/measure lifetime
```

To simplify the programs and remove the need to calculate two different savings, a compromise-value for measure life of 7 years for both Low-Income specific and non-Low Income specific programs can be used with full savings over this entire period. This provides an equivalent savings as the Low-Income specific dual period methodology for an EUL of 18 yrs and a RUL of 6 yrs.

Example Measure savings over lifetime

```
= 1205 kWh/vr * 7 vrs = 8435 kWh/measure lifetime
```

96-2004 - 2005 Final Report: A Measurement and Evaluation Study of the 2004-2005 Limited Income Refrigerator Replacement & Lighting Program, Prepared for: San Diego Gas & Electric, July 31, 2006

2.23 Refrigerator / Freezer Retirement (and Recycling)

Measure Name	Refrigerator/Freezer Retirement (and recycling)
Target Sector	Residential Establishments
Measure Unit	Refrigerator or Freezer
Unit Annual Energy Savings	1659kWh
Unit Peak Demand Reduction	0.2057kW
Measure Life	8 years 97

This measure is the retirement of an existing refrigerator or freezer <u>without replacement</u>. This protocol applies to both residential and non-residential sectors, as refrigerator usage and energy usage are assumed to be independent of customer rate class.⁹⁸-

The deemed savings values for this measure can be applied to refrigerator and freezer retirements meeting the following criteria:

1. Existing, working refrigerator or freezer 10-30 cubic feet in size (savings do not apply if unit is not working)

2.23.1 Algorithms

To determine resource savings, per unit estimates in the algorithms will be multiplied by the number of appliance units. The general form of the equation for the Refrigerator/Freezer Retirement savings algorithm is:

Number of Units X Savings per Unit

The deemed savings values are based on the following algorithms or data research:


 $AkWh = kWh_{RetFridge}$ $= kW_{RetFridge} / hours * CF_{RetFridge}$ 2.23.2 Definition of Terms $kWh_{RetFridge} = Gross annual energy savings per unit retired appliance$ $kW_{RetFridge} = Summer demand savings per retired refrigerator/freezer$ $CF_{RetFridge} = Demand Coincidence Factor (See Section 1.4)$

Where:

kWhRetFridge =1659 kWh

⁹⁷⁻Vermont Energy Investment Corporation (VEIC) for NEEP, Mid Atlantic TRM Version 1.1. October 2010. Pg.27.

^{ee} For example, non-residential rate class usage cases include residential dwellings that are master metered, usage inoffices or any other applications that involve typical refrigerator usage.

Unit savings are the product of average fridge/freezer consumption (gross annual savings). The combined average refrigerator and freezer annual kWh consumption for Pennsylvania is based upon the data contained in the PA EDC appliance recycling contractor (JACO) databases. Because the manufacturer annual kWh consumption data was recorded in less than 50% of appliance collections, it was not used to calculate an average. SWE utilized the recorded year of manufacture in the "JACO Databases" and the annual kWh consumption data by size, age and refrigerator/freezer type contained in the ENERGY STAR Refrigerator Retirement Calculator. 203-incomplete or erroneous records, from a total 18479 records (1%) were removed from the sample-prior to calculating the average annual kWh consumption.

Table 2-36: Refrigerator/Freezer Retirement Energy and Demand Savings

	Source/Reference	Energy and Demand Savings	
kWh _{RetFridge}	Combined average refrigerator and freezer annual kWh consumption for Pennsylvania (based on all available PA EDC appliance recycling databases from JACO)	1,659kWh ¹⁰⁰	
kW _{RetFridge} =	1659kWh/5000hours * 0.620	0.2057kW	

⁹⁹⁻Energy Star Refrigerator Retirement Calculator, accessed 10/15/2011 at-

http://www.energystar.gov/index.cfm?fuseaction=refrig.calculator

¹⁶⁰-Savings value derived from the JACO Appliance Collection Databases received from all EDCs (Allegheny, PPL, PECO, Duquesne and FirstEnergy). This value is subject to change in future TRMs based on further analysis of other evaluation reports on appliance recycling programs across the nation.

2.242.23 Residential New Construction

2.24.1 2.23.1 Algorithms

Insulation Up-Grades, Efficient Windows, Air Sealing, Efficient HVAC Equipment and Duct Sealing_(Weather-Sensitive Measures):

Energy <u>and peak demand</u> savings due to improvements in <u>the above measures in</u> Residential New Construction <u>programs</u> will be a direct output of accredited Home Energy Ratings (HERS) software that meets the applicable Mortgage Industry National Home Energy Rating System Standards. REM/Rate¹⁰¹ is cited here as an example of an accredited software which <u>can be used to estimate savings for this program. REM/Rate</u> has a module that compares the energy characteristics of the energy efficient home to the baseline/reference home and calculates savings. For residential new construction, the <u>baseline</u> building thermal envelope and/or system characteristics shall be based on the current state adopted 2009 International Residential Code (IRC 2009).

The energy savings for weather-sensitive measures will be calculated from the software output using the following algorithm:

Energy savings of the qualified home (kWh)

= (Heating kWh_b – Heating kWh_a) + (Cooling kWh_b – Cooling kWh_a)

The system peak electric demand savings for weather-sensitive measures will be calculated from the software output with the following savings' algorithms, which are is based on compliance and certification of the energy efficient home to the EPA's ENERGY STAR for New Homes' program standard:

Peak demand of the baseline home

= (PLb X OFb) / EER_b (SEERb X BLEER X 1,000).

Peak demand of the qualifying home

= $(PLq \times OFq) / EER_{o}(EERq \times 1,000)$.

Coincident system peak electric demand savings

= (Peak demand of the baseline home – Peak demand of the qualifying home) X CF.

Hot Water, Lighting, and Appliances (Non-Weather-Sensitive Measures):

Quantification of additional <u>energy and peak demand</u> savings due to the <u>installationaddition</u> of high-efficiency <u>electric water heaters</u>, lighting and <u>other appliances clothes washers</u>-will be based on the algorithms presented for these <u>measures appliances</u> in Section 2:—(Residential Measures) of this Manual. Where the TRM algorithms involve deemed savings, e.g. lighting, the savings in the baseline and qualifying homes should be compared to determine the actual savings of the qualifying home above the baseline.

Residential New Construction

¹⁰¹ DoE's Building Energy Software Tools Directory (http://apps1.eere.energy.gov/buildings/tools_directory/software).

In instances where REM/Rate calculated parameters or model inputs do not match TRM algorithm inputs, additional data collection is necessary to use the TRM algorithms. One such example is lighting. REM/Rate requires an input of percent of lighting fixtures that are energy efficient whereas the TRM requires an exact fixture count. Another example is refrigerators, where REM/Rate requires projected kWh consumed and the TRM deems savings based on the type of refrigerator.

It is also possible to have increases in consumption or coincident peak demand instead of savings for some non-weather sensitive measures. For example, if the amount of efficient lighting in a new home is less than the amount assumed in the baseline (IRC 2009), the home will have higher energy consumption and coincident peak demand for lighting, even though it still qualifies for the program.

Ventilation Equipment:

Additional energy savings of 175 kWh and peak-demand saving of 60 Watts will be added to the output of the home energy rating software to account for the installation of high-efficiency ventilation equipment. These values are based on a baseline fan of 80 Watts and an efficient fan of 20 Watts running for eight-hours per day. 402

2.24.22.23.2 Definition of Terms					
	Heating kWh _b = Annual heating energy consumption of the				
	baseline home in kWh, from software.				
Heating kWh _g	= Annual heating energy consumption of the qualifying home in				
	kWh, from software.				
Cooling kWh _b	= Annual cooling energy consumption of the baseline home in				
	kWh, from software.				
Cooling kWh _a	= Annual cooling energy consumption of the qualifying home in				
_	kWh, from software.				
PLb	= Estimated Peak-peak cooling load of the baseline home in				
	kbtuh, from software. Btuh.				
 OFb	= Over-sizing factor for the HVAC unit in the baseline home.				
EER _b	= Energy Efficiency Ratio of the baseline unit.				
<u>LLN_b</u>					
<u>EER_q</u>	= Energy Efficiency Ratio of the qualifying unit.				
SEERb	= Seasonal Energy Efficiency Ratio of the baseline unit.				
I BLEER	= Factor to convert baseline SEERb to EERb.				

⁴⁰²No source provided for these savings figure. Additional research and updated values are recommended.

	Dav	Data.	lung	2012	2013	(DRAFT)
_	/CV	Date.	June	ZUIZ	ZUIO	UDRALLI

PLq	= <u>Estimated peak cooling loadfor the</u> Actual predicted peak load- for the program qualifying home constructed, in <u>kbtuh, from</u> <u>software</u> .Btuh.
OFq	= Over-sizing factor for the HVAC unit in the program qualifying home.
<u>S</u> EERq	= <u>SEER</u> associated with the HVAC system in the qualifying home.
CF	= Demand Coincidence Factor (See Section 1.4)

A summary of the input values and their data sources follows:

Table 2-414137: Residential New Construction – References

Component	Туре	Value	Sources
Heating kWh _b	<u>Variable</u>	Software Calculated	1
Heating kWh _q	<u>Variable</u>	Software Calculated	2
Cooling kWh _b	<u>Variable</u>	Software Calculated	1
Cooling kWh _q	<u>Variable</u>	Software Calculated	2
PLb	Variable	Software EDC-Calculated	31, Software Output
OF <i>b</i>	Fixed	1.6	<u>42</u>
<u>EER</u> _b	<u>Variable</u>	EDC Data Gathering or SEER _b * BLEER	<u>5</u>
EERg	<u>Variable</u>	EDC Data Gathering or SEER _q * BLEER	<u>5</u>
SEERb	Fixed	13	<u>6</u> 3
BLEER	Fixed	(11.3/13)	<u>7</u> 4
PLq	Variable	Software EDC-Calculated	85, Software Output
OFq	Fixed	1.15	<u>9</u> 6
<u>S</u> EERq	Variable	EDC Data Gathering 10 AEPS App EDC's Data G	
CF	Fixed	0.70	<u>11</u> 7

Sources:

- 1. Calculation of annual energy consumption of a baseline home from the home energy rating tool based on the reference home energy characteristics.
- 2. Calculation of annual energy consumption of an energy efficient home from the home energy rating tool based on the qualifying home energy characteristics

- 2.4. PSE&G 1997 Residential New Construction baseline study. 2004 Long Island Power Authority Residential New Construction Baseline Study Values of 155% to 172% over-sizing confirms this value.
- If the EER of the unit is know, use the EER. If only the SEER is known, then use SEER * BLEER to estimate the EER.
- 3-6. Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.
- 4.7. Ratio to calculate EER from SEER based average EER for SEER 13 units.
- 5-8. Calculation of peak load of energy efficient home from the home energy rating tool based on the <u>qualifying specified</u> home energy characteristics.
- 9. Program guideline for qualifying home.
- 6.10. SEER of HVAC unit in energy efficient qualifying home.
- 7.11. Based on an analysis of six different utilities by Proctor Engineering.

The following table lists the building envelope characteristics of the baseline reference home based on IRC 2009 for the three climate zones in Pennsylvania..

Table 2-424238: Baseline Insulation and Fenestration Requirements by Component (Equivalent U-Factors)

Climate Zone	Fenestration U-Factor	Skylight U-Factor	Ceiling U- Factor	Frame Wall U- Factor	Mass Wall U-Factor		Basement Wall U-Factor	Slab R-Value &Depth	Crawl Space Wall U- Factor
4A	0.35	0.60	0.030	0.082	0.141	0.047	0.059	10, 2 ft	0.065
5A	0.35	0.60	0.030	0.060	0.082	0.033	0.059	10, 2 ft	0.065
6A	0.35	0.60	0.026	0.060	0.060	0.033	0.059	10, 4 ft	0.065

Sources:

2009 International Residential Code Table N1102.1.2. Table N1102.1.2 Equivalent U-Factors presents the R-Value requirements of Table N1102.1.1 in an equivalent U-Factor format. Users may choose to follow Table N1102.1.1 instead. IRC 2009 supersedes this table in case of discrepancy. Additional requirements per Section N1102 of IRC 2009 must be followed even if not listed here.

Table 2-434339: Energy Star Homes - User Defined Reference Home

Data Point	Value ¹⁰³	Source
Air Infiltration Rate	0.30 ACH for windows, skylights, sliding glass doors	1
	0.50 ACH for swinging doors	
Duct Leakage	12 cfm25 (12 cubic feet per minute per 100 square feet of conditioned space when tested at 25 pascals)	1
Duct Insulation	Supply ducts in attics shall be insulated to a minimum of R-8. All other ducts insulated to a minimum of R-6.	1
Duct Location	50% in conditioned space, 50% unconditioned space	Program Design
Mechanical Ventilation	None	1
Lighting Systems	Minimum 50% of permanent installed fixtures to be high- efficacy lamps	1
Appliances	Use Default	
Setback Thermostat	Maintain zone temperature down to 55 $^{\circ}$ F (13 $^{\circ}$ C) or up to 85 $^{\circ}$ F (29 $^{\circ}$ C)	1
Temperature Set Points	Heating: 70°F Cooling: 78°F	1
Heating Efficiency		
Furnace	80% AFUE	2
Boiler	80% AFUE	2
Combo Water Heater	76% AFUE (recovery efficiency)	2
Air Source Heat Pump	7.7 HSPF	1
Geothermal Heat Pump	7.7 HSPF	1
PTAC / PTHP	Not differentiated from air source HP	1
Cooling Efficiency		
Central Air Conditioning	13.0 SEER	1
Air Source Heat Pump	13.0 SEER	1
Geothermal Heat Pump	13 SEER (11.2 EER)	1
PTAC / PTHP	Not differentiated from central AC	1
Window Air Conditioners	Not differentiated from central AC	1
Domestic WH Efficiency		
Electric	EF = 0.97 - (0.00132 * gallons)	3
Natural Gas	EF = 0.67 - (0.0019 * gallons)	3

¹⁰³ Single and multiple family as noted.

Data Point	Value ¹⁰³	Source
Additional Water Heater Tank Insulation	None	

Sources:

- 1. 2009 International Residential Code (IRC 2009, Sections N1102 N1104)
- Federal Register / Vol. 73, No. 145 / Monday, July 28, 2008 / Rules and Regulations, p. 43611-43613, 10 CFR Part 430, "Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces and Boilers."
- 3. Federal Register / Vol. 75, No. 73 / Friday, April 16, 2010 / Rules and Regulations, p. 20112-20236, 10 CFR Part 430, "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters; Final Rule."

2.24 ENERGY STAR Refrigerators

Measure Name	<u>Refrigerators</u>
Target Sector	Residential Establishments
Measure Unit	<u>Refrigerator</u>
Unit Energy Savings	Varies by Configuration
Unit Peak Demand Reduction	Varies by Configuration
Measure Life	12 years

This measure is for the purchase and installation of a new refrigerator meeting ENERGY STAR or ENERGY STAR Most Efficient criteria. An ENERGY STAR refrigerator must be at least 20 percent more efficient than the minimum federal government standard. The ENERGY STAR Most Efficient is a new certification that identifies the most efficient products among those that qualify for ENERGY STAR. ENERGY STAR Most Efficient refrigerators must be at least 30 percent more efficient than the minimum federal standard.

2.24.1 Algorithms

The general form of the equation for the ENERGY STAR Refrigerator measure savings algorithm is:

Total Savings = Number of Refrigerators x Savings per Refrigerator

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of refrigerators. The number of refrigerators will be determined using market assessments and market tracking.

If the volume and configuration of the refrigerator is known, the federal minimum efficiency and ENERGY STAR qualified models' annual energy consumption are determined using Table 2-44Table 2-44Table 2-42.

The energy and demand savings are given by the following algorithms:

ENERGY STAR Refrigerator

 ΔkWh = $kWh_{base} - kWh_{EE}$ ΔkW_{peak} = $(kWh_{base} - kWh_{EE})/Hours * CF$

ENERGY STAR Most Efficient Refrigerator

 ΔkWh = $kWh_{base} - kWh_{ME}$

<u>∆kW_{peak}</u>	=(kWh _{base} - kWh _{ME})/Hours * CF
2.24.2 De	finition of Terms
<u>kWh_{base}</u>	= Annual energy consumption of baseline unit
<u>kWh_{EE}</u>	= Annual energy consumption of ENERGY STAR qualified unit
kWh _{ME}	= Annual energy consumption of ENERGY STAR Most Efficient
_	<u>qualified unit</u>
CF	=Demand coincidence factor
Hours	=Hours of operation per year
Where:	
0.5	

 $\frac{CF}{Hours} = \frac{1}{8,760^{104}}$

Refrigerator energy use is characterized by configuration (top freezer, bottom freezer, etc.), volume, whether defrost is manual or automatic and whether there is through-the-door ice. If this information is known, annual energy usage of the ENERGY STAR model and federal standard model can be calculated using Table 2-44Table 2-44Table 2-42. The term "AV" in the equations refers to "Adjusted Volume," which is AV = (Fresh Volume) + 1.63 x (Freezer Volume). Note, ENERGY STAR algorithms are not given for the categories "bottom mount freezer with through-the-door ice", "refrigerator only-single door without ice" and "refrigerator/freezer- single door."

Refer to Table 2-45Table 2-45Table 2-43 for default values for these categories. Also, this table is also provided for planning purposes to compare to the changing federal standards detailed in Table 2-48Table 2-48.

Table 2-444442: Federal Standard and ENERGY STAR Refrigerators Maximum Annual Energy

Consumption if Configuration and Volume Known¹⁰⁵

	Refrigerator Category	Federal Standard Maximim Usage in kWh/year	ENERGY STAR Maximum Energy Usage in kWh/year
l	Standard Size Models: 7.75 c	ubic feet or greater	
l	Manual Defrost and Partial Automatic Defrost	8.82*AV+248.4	7.056*AV+198.72
	Automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigeratorsautomatic defrost	9.80*AV+276	7.84*AV+220.8
	Automatic defrost with side-mounted freezer without through-the-door ice service	4.91*AV+507.5	3.928*AV+406
	Automatic defrost with bottom-mounted freezer without through-the-door ice service	4.60*AV+459	3.68*AV+367.2

¹⁰⁴ ENERGY STAR Residential Refrigerators Savings Calculator. Accessed June 18, 2012.

¹⁰⁵ ENERGY STAR Refrigerators and Freezers Key Product Criteria.

http://www.energystar.gov/index.cfm?c=refrig.pr_crit_refrigerators

Automatic defrost with top-mounted freezer with through- the-door ice service	10.20*AV+356	8.16*AV+284.8
Automatic defrost with side-mounted freezer with through- the-door ice service	10.10*AV+406	8.08*AV+324.8
Compact Size Models: Less than 7.75 cubic	feet and 36 inches or les	ss in height
Compact Refrigerator-Freezerpartial automatic defrost	7.00*AV+398	5.6*AV+318.4
Compact Refrigerator-Freezersautomatic defrost with top-mounted freezer and compact all-refrigeratorsautomatic defrost	12.70*AV+355	10.16*AV+284
Compact Refrigerator-Freezersautomatic defrost with side-mounted freezer	7.60*AV+501	6.08*AV+400.8
Compact Refrigerator-Freezersautomatic defrost with bottom-mounted freezer	13.10*AV+367	10.48*AV+293.6

The default values for each configuration are given in Table 2-45Table 2-45Table 2-43:

Table 2-454543: Default Savings Values for ENERGY STAR Refrigerators 106

Refrigerator Category	Conventional Unit Energy Usage in kWh/yr ¹⁰⁷	ENERGY STAR Energy Usage in kWh/yr ¹⁰⁸	ΔkWh	ΔkW	
Manual Defrost and Partial Automatic Defrost	<u>316</u>	<u>229</u>	<u>87</u>	0.0099	
Top mount freezer without door ice	<u>477</u>	<u>369</u>	<u>108</u>	<u>0.0123</u>	
Side mount freezer without door ice	<u>638</u>	<u>509</u>	<u>129</u>	<u>0.0147</u>	
Bottom mount freezer without door ice	<u>569</u>	<u>448</u>	<u>121</u>	<u>0.0138</u>	
Side mount freezer with door ice	<u>713</u>	<u>557</u>	<u>156</u>	<u>0.0178</u>	
Bottom mount freezer with door ice	<u>691</u>	<u>536</u>	<u>155</u>	<u>0.0177</u>	
Refrigerator only - single door without ice	<u>439</u>	<u>337</u>	<u>102</u>	<u>0.0116</u>	
Refrigerator/Freezer – single door	<u>450</u>	<u>348</u>	<u>102</u>	<u>0.0116</u>	
Compact Size Models: Less than 7.75 cubic feet and 36 inches or less in height					
Manual Defrost and Partial Automatic <u>Defrost</u>	<u>360</u>	<u>280</u>	<u>80</u>	<u>0.0091</u>	
Top Mount and Refrigerator Only	<u>410</u>	<u>310</u>	<u>100</u>	<u>0.0114</u>	
Bottom mount freezer	451	362	89	0.0102	

ENERGY STAR Most Efficient annual energy usage can be calculated using Table 2-46Table 2-46Table 2-44. Baseline energy usage can be calculated using Table 2-44Table 2-44Table 2-42

¹⁰⁶ Note configurations not listed do not have any ENERGY STAR qualified models as of August 16, 2012.

¹⁰⁷ ENERGY STAR Residential Refrigerators Qualified Products List. August 16, 2012. Average federal standard consumption of all qualifying models by configuration.

108 Ibid. Average consumption of all ENERGY STAR qualifying models by configuration.

¹⁰⁹ ENERGY STAR Most Efficient 2012 Eligibility Criteria for Recognition Refrigerator-Freezers. http://www.energystar.gov/ia/partners/downloads/Ref Freezer Criteria ME 2012.pdf?ff08-8680

Table 2-464644: ENERGY STAR Most Efficient Annual Energy Usage if Configuration and **Volume Known**

Refrigerator Category	ENERGY STAR Most Efficient Maximum Energy Usage in kWh/yr
Manual Defrost and Automatic Defrost	AV ≤ 49.8, Eann ≤ 6.17*AV + 173.9 AV > 49.8, Eann ≤ 481
Top mount freezer without door ice	AV ≤ 42.0, Eann ≤ 6.86*AV + 193.2 AV > 42.0, Eann ≤ 481
Side mount freezer without door ice	AV ≤ 36.5, Eann ≤ 3.44*AV + 355.3 AV > 36.5, Eann ≤ 481
Bottom mount freezer without door ice	AV ≤ 49.6, Eann ≤ 3.22*AV + 321.3 AV > 49.6, Eann ≤ 481
Bottom mount freezer with door ice	AV ≤ 29.6, Eann ≤ 3.50*AV + 377.3 AV > 29.6, Eann ≤ 481
Top mount freezer with door ice	AV ≤ 32.5, Eann ≤ 7.14*AV + 249.2 AV > 32.5, Eann ≤ 481
Side mount freezer with door ice	<u>AV ≤ 27.8, Eann ≤ 7.07*AV + 284.2</u> <u>AV > 27.8, Eann ≤ 481</u>

The default values for each ENERGY STAR Most Efficient configuration are given in Table 2-47Table 2-47Table 2-45.

Table 2-474745: Default Savings Values for ENERGY STAR Most Efficient Refrigerators 110

Refrigerator Category	Conventional Unit Energy Usage in kWh/yr ¹¹¹	ENERGY STAR Most Efficient Consumption in kWh/yr ¹¹²	ΔkWh	ΔkW
Top mount freezer without door ice	<u>477</u>	<u>328</u>	<u>149</u>	<u>0.0170</u>
Side mount freezer without door ice	<u>638</u>	<u>392</u>	<u>246</u>	<u>0.0281</u>
Bottom mount freezer without door ice	<u>569</u>	<u>403</u>	<u>166</u>	<u>0.0189</u>
Side mount freezer with door ice	<u>713</u>	<u>457</u>	<u>256</u>	0.0292
Bottom mount freezer with door ice	<u>691</u>	<u>473</u>	<u>218</u>	0.0249

2.24.3 Measure Life

ENERGY STAR and ENERGY STAR Most Efficient Refrigerators: Measure Life = 12 years. 113

¹¹⁰ Configurations of qualified models as of August 1, 2012.

¹¹¹ ENERGY STAR Residential Refrigerators Qualified Products List. August 16, 2012. Average federal standard

consumption of all qualifying models by configuration.

112 Average consumption of all qualified units as of June August 1, 2012. Qualified units list from Southern California Edison: http://asset.sce.com/Documents/Residential%20-

^{%20}Rebates%20and%20Savings/MostEfficientRefrigeratorQPL.pdf.

113 ENERGY STAR Appliances Savings Calculator. Accessed August 2012.

2.24.4 Future Standards Changes

As of September 15, 2014 new federal minimum efficiency standards for refrigerators and refrigerators-freezers will take effect. The maximum allowable energy usage by refrigerator configuration is listed in Table 2-48Table 2-48Table 2-46. These standards will take effect beginning with the 2015 TRM.

New ENERGY STAR standards for refrigerators are in development. Updated ENERGY STAR standards will be included in this section of the 2014 TRM.

Table 2-484846: Federal Freezer Standards Effective as of the 2015 TRM114

Refrigerator Category	Federal Standard Maximim Usage in kWh/year (Effective 2015 TRM)	
Standard Size Models: 7.75 cubic feet or	<u>greater</u>	
Refrigerators-freezers and refrigerators other than all- refrigerators with manual defrost (including partial automatic defrost)	7.99*AV + 225.0	
All-refrigerators – manual defrost	6.79*AV + 193.6	
Automatic defrost with top-mounted freezer without through-the-door ice service	8.07*AV + 233.7	
Automatic defrost with side-mounted freezer without through-the-door ice service	8.51*AV + 297.8	
Automatic defrost with bottom-mounted freezer without through-the-door ice service	8.85*AV + 317.0	
Automatic defrost with top-mounted freezer with through- the-door ice service	8.40*AV + 385.4	
Automatic defrost with side-mounted freezer with through- the-door ice service	8.54*AV + 432.8	
Compact Size Models: Less than 7.75 cubic feet and 36 inches or less in		
height		
Compact refrigerator-freezers and refrigerators other than all-refrigerators with manual defrost	9.03*AV + 252.3	
Compact refrigerator-freezers – manual defrost	7.84*AV + 219.1	
Compact refrigerator-freezer – partial automatic defrost	5.91*AV + 335.8	
Compact refrigerator-freezersautomatic defrost with top- mounted freezer	11.80*AV + 339.2	
Compact Refrigerator-Freezersautomatic defrost with side-mounted freezer	6.82*AV + 456.9	
Compact Refrigerator-Freezersautomatic defrost with bottom-mounted freezer	11.80*AV + 423.2	

¹¹⁴ U.S. Department of Energy. Federal Register. 179th ed. Vol. 76. September 15, 2011. https://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_frnotice.pdf

2.25 **ENERGY STAR Freezers**

Measure Name	<u>Freezers</u>
Target Sector	Residential Establishments
Measure Unit	<u>Freezer</u>
Unit Energy Savings	Varies by Configuration
Unit Peak Demand Reduction	Varies by Configuration
Measure Life	12 years

This measure is for the purchase and installation of a new freezer meeting ENERGY STAR criteria. An ENERGY STAR freezer must be at least 10 more efficient than the minimum federal government standard.

2.25.1 Algorithms

The general form of the equation for the ENERGY STAR Freezer measure savings algorithm is:

<u>Total Savings</u> = Number of Freezers x Savings per Freezer

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of freezers. The number of freezers will be determined using market assessments and market tracking.

If the volume and configuration of the freezer is known, the federal minimum efficiency and ENERGY STAR qualified models' annual energy consumption are determined using Table 2-49Table 2-49Table 2-47.

The energy and demand savings are given by the following algorithms:

ENERGY STAR Freezer

ΔkWh	=kWh _{base} – kWh _{EE}
∆kW _{peak}	=(kWh _{base} - kWh _{EE})/Hours * CF

2.25.2 Definition of Terms

<u>kWh_{base}</u>	= Annual energy consumption of baseline unit
<u>kWh_{EE}</u>	= Annual energy consumption of ENERGY STAR qualified unit
Hours	=Hours of operation per year
CF	=Demand coincidence factor

SECTION 2: Residential Measures

Where:

CF = 1 =8.760¹¹⁵ Hours

Freezer energy use is characterized by configuration (upright, chest or compact), volume and whether defrost is manual or automatic and whether. If this information is known, annual energy usage of the ENERGY STAR model and federal minimum efficiency standard model can be calculated using Table 2-49Table 2-49Table 2-47. The term "AV" in the equations refers to "Adjusted Volume," which is AV = 1.73 x Total Volume. Note this table is also provided for planning purposes to compare to the changing federal standards detailed in Table 2-51Table 2-51 Table 2-49.

Table 2-494947: Federal Standard and ENERGY STAR Freezers Maximum Annual Energy Consumption if Configuration and Volume Known¹¹⁶

Freezer Category	Federal Standard Maximim Usage in kWh/year	ENERGY STAR Maximum Energy Usage in kWh/year
Upright with manual defrost	7.55*AV+258.3	< 6.795*AV + 232.47
Upright with automatic defrost	12.43*AV+326.1	< 11.187*AV + 293.49
<u>Chest Freezer</u>	9.88*AV+143.7	< 8.892*AV + 129.33
Compact Upright with manual defrost	9.78*AV+250.8	< 7.824*AV + 200.64
Compact Upright with automatic defrost	11.40*AV+391	< 9.120*AV + 312.8
Compact Chest Freezer	10.45*AV+152	< 8.360*AV + 121.6

The default values for each configuration are given in Table 2-50Table 2-48. Note that a compact freezer is defined as a freezer that has a volume less than 7.75 cubic feet and is 36 inches or less in height.

ENERGY STAR Freezers Savings Calculator. Accessed June 24, 2012.
 ENERGY STAR Refrigerators and Freezers Key Product Criteria. http://www.energystar.gov/index.cfm?c=refrig.pr crit refrigerators

Table 2-505048: Default Savings Values for ENERGY STAR Freezers

Freezer Category	Conventional Unit Energy Usage in kWh/yr ¹¹⁷	ENERGY STAR Energy Usage in kWh/yr ¹¹⁸	<u>ΔkWh</u>	ΔkW
Upright with manual defrost	<u>425</u>	<u>372</u>	<u>53</u>	<u>0.0061</u>
Upright with automatic defrost	<u>692</u>	<u>611</u>	<u>81</u>	0.0092
<u>Chest Freezer</u>	413	<u>370</u>	<u>43</u>	<u>0.0049</u>
Compact Upright with manual defrost	<u>302</u>	<u>234</u>	<u>68</u>	<u>0.0078</u>
Compact Upright with automatic defrost	<u>495</u>	<u>355</u>	<u>140</u>	<u>0.0160</u>
Compact Chest Freezer	<u>260</u>	<u>202</u>	<u>58</u>	0.0066

2.25.3 Measure Life

ENERGY STAR Freezers: Measure Life = 12 years. 119

2.25.4 Future Standards Changes

As of September 15, 2014 new federal minimum efficiency standards for freezers will take effect.

The maximum allowable energy usage by freezer configuration is listed in Table 2-51Table

2-51Table 2-49. These standards will take effect beginning with the 2015 TRM.

New ENERGY STAR standards for freezers are in development. Updated ENERGY STAR standards will be included in this section of the 2014 TRM,

Table 2-515149: Federal Freezer Standards Effective as of the 2015 TRM¹²⁰

Freezer Category	Federal Standard Maximim Usage in kWh/year (Effective 2015 TRM)	
Upright with manual defrost	5.57*AV + 193.7	
Upright with automatic defrost	8.62*AV + 228.3	
<u>Chest Freezer</u>	7.29*AV + 107.8	
Compact Upright with manual defrost	8.65*AV + 225.7	
Compact Upright with automatic defrost	10.17*AV + 351.9	

¹¹⁷ ENERGY STAR Residential Freezers Qualified Products List. August 16, 2012. Average federal standard consumption of all qualifying models by configuration.

¹¹⁸ Ibid. Average ENERGY STAR consumption of all qualifying models by configuration.
¹¹⁹ ENERGY STAR Appliances Savings Calculator. Accessed August 2012.

¹²⁰ U.S. Department of Energy. *Federal Register*. 179th ed. Vol. 76. September 15, 2011. https://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_frnotice.pdf

State of Pennsylvania – Technical Reference Manual – Rev Date: June 20122013 (DRAFT)

Compact Chest Freezer 9.25*AV + 136.8

2.26 **ENERGY STAR Clothes Washers**

Measure Name	Clothes Washers
Target Sector	Residential Establishments
Measure Unit	<u>Clothes Washer</u>
Unit Energy Savings	<u>Varies by Fuel Mix</u>
Unit Peak Demand Reduction	<u>0.0147 kW</u>
Measure Life	11 years

This measure is for the purchase and installation of a clothes washer meeting ENERGY STAR eligibility criteria. ENERGY STAR clothes washers use less energy and hot water than non-qualified models.

2.26.1 Algorithms

The general form of the equation for the ENERGY STAR Clothes Washer measure savings algorithm is:

<u>Total Savings</u> = Number of Clothes Washers x Savings per Clothes Washer

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of clothes washers. The number of clothes washers will be determined using market assessments and market tracking.

Per unit energy and demand savings are given by the following algorithms:

 $\Delta kW = DSav_{CW}XCF$

Where MEFis the Modified Energy Factor, which is the energy performance meteric clothes washers. MEF is defined as:

MEF is the quotient of the capacity of the clothes container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption, M, the hot water energy consumption,

E, and the energy required for removal of the remaining moisture in the wash load, D. The higher the value, the more efficient the clothes washer is. 121

MEF = C / (M + E + D)

2.26.2 Definition of Terms

<u>CAPY_{base}</u>	= Capactiy of baseline clothes washer in cubic feet	
<u>CAPY_{FE}</u>	= Capacity of ENERGY STAR clothes washer in cubic feet	
MEF _{base}	= Modified Energy Factor of baseline clothes washer	
<u>MEF_{EE}</u>	= Modified Energy Factor of ENERGY STAR clothes washer	
Cycles	= Number of clothes washer cycles per year	
%CW _{base} _	=Percentage of total energy consumption for baseline clothes washer operation	
%CW _{EE}	=Percentage of total energy consumption for ENERGY STAR clothes washer operation	
%DHW _{base}	= Percentage of total energy consumption for baseline clothes washer water heating	
%DHW _{EE}	= Percentage of total energy consumption for ENERGY STAR clothes washer water heating	
%ElectricDWH	= Percentage of clothes washers that utilize electrically heated hot water	
%Dyer _{base}	= Percentage of total energy consumption for dryer operation with baseline clothes washer	
%Dyer _{EE}	= Percentage of total energy consumption for dryer operation with ENERGY STAR clothes washer	
%Electric Dryer	= Percentage of dryers that are electric	
<u>DSavCW</u>	= Summer demand savings per purchased ENERGY STAR clothes washer. 122	
<u>CF</u>	=Demand Coincidence Factor. The coincidence of average clothes washer demand to summer system peak	
As of February 1, 2013	B a clothes washer must have a MEF ≥ 2.0 and a WF ≤ 6.0 to meet	

ENERGY STAR standards. WF is the Water Factor, which is the measure of water efficiency of a

 $^{{\}color{red}\underline{^{121}}} \ \underline{\text{Definition provided on ENERGY STAR Clothes Washers Key Product Criteria website:}}$

http://www.energystar.gov/index.cfm?c=clotheswash.pr_crit_clothes_washers

122 Further research to update this value and CF is planned for 2014 TRM update.

clothes washer, expressed in gallons per cubic feet. WF is the quotient of the total weighted percycle water consumption dividied by the capacity of the clothes washer. 123

The federal standard for a clothes washer must have a MEF ≥ 1.26 and WF ≤ 9.5. 124

The default values for the terms in the algorithms are listed in Table 2-52Table 2-52. If unit information is known (such as capacity, MEF, fuel mix) then actual values should be used.

Table 2-525250: ENERGY STAR Clothes Washers - References

<u>Term</u>	Type	<u>Value</u>	<u>Source</u>
<u>CAPY_{base}</u>	<u>Fixed</u>	3.19 ft ³	1
CAPY _{EE}	Variable	EDC Data Gathering	EDC Data Gathering
<u> </u>	<u></u>	Default: 3.64 ft ³	2
MEF _{base}	Fixed	1.43	1
MEF _{EE}	Variable	EDC Data Gathering	EDC Data Gathering
MET EE	variable	Default: 2.51	2
Cycles	<u>Fixed</u>	<u>276</u>	3
%CW _{base}	Fixed	9%	4
%CW _{EE}	Fixed	9%	4
%DHW _{base}	Fixed	<u>37%</u>	4
%DHW _{EE}	Fixed	22%	4
%Electric DHW Variable	Variable	EDC Data Gathering	Appliance Saturation Studies
		Default: 17%	<u>5</u>
%Dryer _{base}	Fixed	<u>54%</u>	4
<u>%Dryer_{EE}</u>	Fixed	<u>69%</u>	4

¹²³ Based on ENERGY STAR Version 6.0 requirements, ENERGY STAR Program Requirements Product Specification for Citohes Washers, Eligibility Criteria Version 6.0. Accessed August 2012.

http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/commercial_clothes_washers/ENERGY_S_TAR_Final_Version_6_Clothes_Washer_Specification.pdf

¹²⁴ ENERGY STAR Clothes Washers Key Product Criteria website:

http://www.energystar.gov/index.cfm?c=clotheswash.pr_crit_clothes_washers

%Electric Dryer Variable	EDC Data Gathering	Appliance Saturation Studies	
	variable	Default: 64%	<u>6</u>
<u>DSav_{CW}</u>	Fixed	0.0147	Z
CF	Fixed	1	8

Sources:

- Average MEF and capacity of baseline units from the DOE database of clothes washers
 certified after July 2011. Calculated by taking average of all units that met federal standards but not ENERGY STAR standards. Accessed August 2012.
- Average MEF and capacity of all ENERGY STAR qualified clothes washers, as of August 2012.
- Based on weighted average number of loads from EIA 2009 Residential Energy
 Consumption Survey (RECS) appliance data for the state of Pennsylvania.
 http://www.eia.gov/consumption/residential/index.cfm
- 4. The percentage of total consumption that is used for the machine, water heating and dryer varies with efficiency. Perecentages were developed using the above parameters and using the U.S. Department of Energy's Life-Cycle Cost and Payback Period tool, available at:
 http://www1.eere.energy.gov/buildings/appliance-standards/residential/clothes-washers-support-stakeholder-negotiations.html
- EIA 2009 Residential Energy Consumption Survey (RECS) water heating data for the state of Pennsylvania. http://www.eia.gov/consumption/residential/index.cfm
- 6. EIA 2009 Residential Energy Consumption Survey (RECS) appliance data for the state of Pennsylvania. http://www.eia.gov/consumption/residential/index.cfm
- 7. Energy and water savings based on Consortium for Energy Efficiency estimates.
 Assumes 75% of participants have gas water heating and 60% have gas drying (the balance being electric). Demand savings derived using NEEP screening clothes washer load shape.
- 8. Coincidence factor already embedded in summer peak demand reduction estimate

The default values for various fuel mixes are given in Table 2-53Table 2-53Table 2-51.

Table 2-535351: Default Clothes Washer Savings

<u>Fuel Mix</u>	ΔkWh
Electric DHW/Electric Dryer	<u>215</u>
Electric DHW/Gas Dryer	<u>159</u>
Gas DHW/Electric Dryer	<u>55</u>
Gas DHW/Gas Dryer	<u>19</u>
Default (17% Electric DHW 64% Electric Dryer)	<u>79</u>

2.26.3 Measure Life

ENERGY STAR Clothes Washer: Measure Life = 11 years. 125

2.26.4 Future Standards Changes

As of January 1, 2015 new federal minimum efficiency standards for clothes washers will take effect. Further efficiency standards go into effect beginning January 1, 2018. These efficiency standards and the effective TRM that these standards become the baseline are detailed in Table 2-54Table 2-54Table 2-52.

Table 2-545452: Future Federal Standards for Clothes Washers¹²⁶

	<u>2015 TRM</u>		2018 TRM	
	Minimum MEF	Maximum WF	Minimum MEF	Maximum WF
Top-loading, Compact (less than 1.6 ft³ capacity)	<u>1.26</u>	14.0	<u>1.81</u>	<u>11.6</u>
Top-loading, Standard	<u>1.72</u>	<u>8.0</u>	<u>2.0</u>	<u>6.0</u>
Front-loading, Compact (less than 1.6 ft ³ capacity)	<u>1.72</u>	8.0	N/A	
Front-loading, Standard	<u>2.0</u>	<u>4.5</u>	<u>N</u>	<u>/A</u>

¹²⁵ ENERGY STAR Appliances Savings Calculator. Accessed August 2012.

¹²⁶ U.S. Department of Energy. 10 CFR Parts 429 and 430. Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers. Direct Final Rule.

2.27 ENERGY STAR Dishwashers

Measure Name	<u>Dishwashers</u>
Target Sector	Residential Establishments
Measure Unit	<u>Dishwasher</u>
Unit Energy Savings	Varies by Water Heating Fuel Mix
Unit Peak Demand Reduction	<u>0.0225 kW</u>
Measure Life	11 years

This measure is for the purchase and installation of a dishwasher meeting ENERGY STAR eligibility criteria. ENERGY STAR dishwashers use less energy and hot water than non-qualified models.

2.27.1 Algorithms

The general form of the equation for the ENERGY STAR Dishwasher measure savings algorithm is:

<u>Total Savings</u> = Number of Dishwashers x Savings per Dishwasher

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of dishwashers. The number of dishwashers will be determined using market assessments and market tracking.

Per unit energy and demand savings algorithms for dishwashers utilizing electrically heated hot water:

2.27.2 Definition of Terms

 $\begin{array}{ll} kWh_{base} &= Annual\ anergy\ consumption\ of\ baseline\ dishwasher \\ \hline kWh_{EE} &= Annual\ energy\ consumption\ of\ ENERGY\ STAR\ qualified\ unit \\ \hline \%kWh_{op} &= Percentage\ of\ unit\ dishwasher\ energy\ consumption\ used\ for\ operation \\ \hline \%kWh_{heat} &= Percentage\ of\ dishwasher\ unit\ energy\ consumption\ used\ for\ water\ heating \\ \hline \end{array}$

%Electric_{DHW} = Percentage of dishwashers assumed to utilize electrically heated hot water.

<u>DSav_{DW}</u> = <u>Summer demand savings per purchased ENERGY STAR clothes washer.</u>

<u>CF</u> = <u>Demand Coincidence Factor</u>. The coincidence of average dishwasher demand to summer system peak

ENERGY STAR qualified dishwashers must use less than or equal to the water and energy consumption values given in Table 2-55Table 2-55Table 2-53. Note, as of May 31, 2013, ENERGY STAR compact dishwashers have the same maximum water and energy consumption requirements as the federal standard. A standard sized dishwasher is defined as any dishwasher that can hold 8 or more place settings and at least six serving pieces. 127

Table 2-555553: Federal Standard and ENERGY STAR v 5.0 Residential Dishwaster Stanard

		Federal S	tandard ¹²⁸	ENERGY STAR v 5.0 ¹²⁹	
	Product Type	Water (gallons per cycle)	Energy (kWh per year)	Water (gallons per cycle)	Energy (kWh per year)
l	<u>Standard</u>	<u>≤ 5.0</u>	≤ 307	<u>≤ 4.25</u>	<u>≤ 295</u>

Table 2-565654: ENERGY STAR Dishwashers - References

Component	<u>Type</u>	<u>Value</u>	<u>Source</u>
<u>kWh_{base}</u>	<u>Fixed</u>	244 kWh/yr	<u>1</u>
<u>kWh_{EE}</u>	<u>Fixed</u>	215 kWh/yr	<u>2</u>
%kWh _{op}	<u>Fixed</u>	44%	<u>3</u>
%kWh _{heat}	<u>Fixed</u>	<u>56%</u>	<u>3</u>
%Electric _{DHW}	<u>Variable</u>	EDC Data Gathering	Appliance Saturation Studies
<u>DSav_{DW}</u>	<u>Fixed</u>	<u>0.0225¹³⁰</u>	<u>4</u>
<u>CF</u>	<u>Fixed</u>	1	<u>5</u>

¹²⁷ Dishwashers Key Product Criteria. http://www.energystar.gov/index.cfm?c=dishwash.pr crit dishwashers

¹²⁸ U.S. Department of Energy. Federal Register. 104th ed. Vol. 77, May 30, 2012.

http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0060-0005

¹²⁹ ENERGY STAR Program Requirements Product Specification for Residential Dishwashers.

http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/res_dishwashers/ES_V5_Dishwashers_Sp_ecification.pdf

¹³⁰ Further research to update this value and CF is planned for 2014 TRM update.

Sources:

- Federal baseline assumption adjusted based on 2009 Residential Energy Consumption (RECS) data on average dishwasher cycles per year for Pennsylvania. DOE assumes 215 cycles per year and Pennsylvania average cycles per year is 171.
- 2. ENERGY STAR Dishwashers Qualified Products List. August 16, 2012. Average consumption of all qualified units adjusted based on Pennsylvania cycles per year.
- 3. ENERGY STAR Appliances Calculator. Accessed August 2012.
- 4. Demand savings derived using dishwasher load shape.
- 5. Coincidence factor already embedded in summer peak demand reduction estimate

For EDCs where water heating fuel mix is unknown (%Electric_{DHW}), use data from EDC-specific values from residential appliance saturation studies (or similar studies). If such studies are unavailable use the default fuel mix given in Table 2-57Table 2-57Table 2-55.

Table 2-575755: Default Dishwasher Hot Water Fuel Mix131

DHW Fuel	DHW Fuel Mix
<u>Electric</u>	<u>17%</u>
<u>Other</u>	<u>83%</u>

The default values for electric and non-electric water heating and the default fuel mix from Table 2-57Table 2-57Table 2-55 is given in Table 2-58Table 2-56.

Table 2-585856: Default Dishwasher Energy and Demand Savings

Water Heating	∆kWh/yr
Electric (%Electric _{DHW} = 100%)	<u>29</u>
Non-Electric (%Electric _{DHW} = 0%)	<u>13</u>
Default Fuel Mix (%Electric _{DHW} = 42%)	16

2.27.3 Measure Life

ENERGY STAR Dishwashers: Measure Life = 11 years 132

¹³¹ Default fuel mix from EIA 2009 Residential Energy Consumption Survey (RECS) water heating data for the state of Pennsylvania. http://www.eia.gov/consumption/residential/index.cfm

¹³² ENERGY STAR Appliances Savings Calculator. Accessed August 2012.

2.28 **ENERGY STAR Dehumidifiers**

Measure Name	<u>Dehumidifiers</u>
Target Sector	Residential Establishments
Measure Unit	<u>Dehumidifier</u>
Unit Energy Savings	Varies based on capacity
Unit Peak Demand Reduction	<u>0.0098 kW</u>
Measure Life	12 years

ENERGY STAR qualified dehumidifiers are 15 percent more efficient than non-qualified models due to more efficient refrigeration coils, compressors and fans.

2.28.1 Algorithms

The general form of the equation for the ENERGY STAR Refrigerator measure savings algorithm is:

=Number of Dehumidifiers x Savings per Dehumidifier Total Savings

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of dehumidifiers. The number of dehumidifiers will be determined using market assessments and market tracking.

Per unit energy and demand savings algorithms:

= ((Avg Capacity *0.473) / 24) * Hours) * (1/ (L/kWh_{base}) - 1/ (L/kWh_{EE})) <u>∆kWh</u> ∆kW_{peak} =DSav_{DH} X CF

2.28.2 Definition of Terms

Avg Capacity	= Average capacity of the unit (pints/day)
0.473	= Conversion factor from pints to liters
24	=Conversion factor from liters/day to liters/hour
Hours	=Annual hours of operation

	=1620 ¹³³
<u>L/kWh_{base}</u>	=Baseline unit liters of water per kWh consumed
<u>L/kWh_{EE}</u>	=ENERGY STAR qualified unit liters of water per kWh consumed
<u>DSav_{DH}</u>	= Summer demand savings per purchased ENERGY STAR
	<u>dehumidifier</u>
	$=0.0098 \text{ kW}^{134 135}$
CF	= Demand Coincidence Factor. The coincidence of average
	dehumidifier demand to summer system peak
	$=1^{136}$

<u>Table 2-59Table 2-59Table 2-57</u> shows the federal standard minimum efficiency and ENERGY STAR standards, effective October 1, 2012.

Table 2-595957: Dehumidifier Minimum Federal Efficiency and ENERGY STAR Standards

<u>Capacity</u> (pints/day)	Federal Standard 137 (L/kWh)	ENERGY STAR ¹³⁸ (L/kWh)
<u>≤ 35</u>	<u>1.35</u>	
<u>> 35 ≤ 45</u>	<u>1.50</u>	≥ 1.85
<u>>45 ≤ 54</u>	<u>1.60</u>	<u> </u>
<u>>54 < 75</u>	<u>1.70</u>	
<u>75 ≤ 185</u>	<u>2.5</u>	<u>≥ 2.80</u>

The annual energy usage and savings of an ENERGY STAR unit over the federal minimum standard are presented in

Table 2-60Table 2-60Table 2-58 for each capacity range.

¹³³ ENERGY STAR Dehumidifier Calculator

¹³⁴ Conservatively assumes same kW/kWh ratio as Refrigerators.

¹³⁵ Further research to update this value and CF is planned for 2014 TRM update.

¹³⁶ Coincidence factor already embedded in summer peak demand reduction estimate.

¹³⁷ U.S. Department of Energy. *Federal Register*. 66th ed. Vol. 74. April 8, 2009.

https://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/74fr16040.pdf

¹³⁸ ENERGY STAR Program Requirements Product Specification for Dehumidifiers, Eligibility Criteria Version 3.0.
http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/dehumid/ES_Dehumidifiers_Final_V3.0_Eligibility_Criteria.pdf?3cbf-7a48

Table 2-606058: **Dehumidifier Default Energy Savings**

Capacity Range (pints/day)	Default Capacity (pints/day) ¹³⁹	Federal Standard (kWh/yr)	ENERGY STAR (kWh/yr)	ΔkWh
<u>≤ 35</u>	<u>35</u>	<u>686</u>	<u>500</u>	<u>186</u>
<u>> 35 ≤ 45</u>	<u>45</u>	<u>905</u>	<u>733</u>	<u>172</u>
<u>>45 ≤ 54</u>	<u>54</u>	<u>988</u>	<u>854</u>	<u>134</u>
<u>>54 < 75</u>	<u>74</u>	<u>1,211</u>	<u>1,113</u>	<u>98</u>
<u>75 ≤ 185</u>	<u>130</u>	<u>1,660</u>	<u>1,482</u>	<u>178</u>

2.28.3 Measure Life

ENERGY STAR Dehumidifiers: Measure Life = 12 years. 140

¹³⁹ Default capacity is midpoint of each capacity range except those units with capacity less than 35 pints per day, where 29 pints per day was used based on the average capacity of all ENERGY STAR dehumidifiers available in this capacity range as of August 2012.

140 ENERGY STAR Appliances Savings Calculator. Accessed August 2012.

2.29 **ENERGY STAR Room Air Conditioners**

Measure Name	Room Air Conditioners
Target Sector	Residential Establishments
Measure Unit	Room Air Conditioner
Unit Energy Savings	<u>Varies</u>
Unit Peak Demand Reduction	<u>0.059 kW</u>
Measure Life	9 years

This measure relates to the purchase and installation of a room air conditioner meeting ENERGY STAR criterion. ENERGY STAR room air conditioners must be at least 10 percent more efficient than the minimum federal government efficiency standards.

2.29.1 Algorithms

The general form of the equation for the ENERGY STAR Room Air Conditioners (RAC) measure savings algorithm is:

Total Savings =Number of Room Air Conditioner x Savings per Room Air Conditioner

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of room air conditioners. The number of room air conditioners will be determined using market assessments and market tracking.

Definition of Terms 2.29.2

<u>CAPY_{RAC}</u>	Y _{RAC} =The cooling capacity (output in Btuh) of the room air conditioner (RA	
	being installed	
EER _b	=Energy efficiency ratio of the baseline unit	
EER _{ee}	=Energy efficiency ratio of the RAC being installed	
EFLH _{RAC}	=Equivalent full load hours of the RAC being installed	
<u>DSav_{RAC}</u>	= Summer demand savings per purchased ENERGY STAR room AC	

	=0.1018 kW ¹⁴¹ 142
CF	=Demand coincidence factor
	=0.58 ¹⁴³

Table 2-61Table 2-61Table 2-59 lists the minimum federal efficiency standards and minimum

ENERGY STAR efficiency standards for RAC units of various capacity ranges and with and without louvered sides. Units without louvered sides are also referred to as "through the wall" units or "built-in" units.

Table 2-616159: RAC Federal Minimum Efficiency and ENERGY STAR Standards144

Capacity (Btu/h)	Federal Standard EER, with louvered sides	ENERGY STAR EER, with louvered sides	Federal Standard EER, without louvered sides	ENERGY STAR EER, without louvered sides
< 6,000 6,000 to 7,999	≥ 9.7	≥ 10.7	≥ 9.0	≥ 9.9
8,000 to 13,999	<u>≥ 9.8</u>	<u>≥ 10.8</u>		
14,000 to 19,999	≥ 9.7	≥ 10.7	≥ <u>8.5</u>	≥ 9.4
≥ 20,000	≥ 8.5	≥ 9.4		

<u>Table 2-62Table 2-62Table 2-60</u> <u>lists the minimum federal efficiency standards and minimum</u> ENERGY STAR efficiency standards for casement-only and casement-slider RAC units. Casement-only refers to a RAC designed for mounting in a casement window with an encased assembly with a width of 14.8 inches or less and a height of 11.2 inches or less. Casement-slider refers to a RAC with an encased assembly designed for mounting in a sliding or casement window with a width of 15.5 inches or less.

Table 2-626260: Casement-only and Casement-Slider RAC Federal Minimum Efficiency and **ENERGY STAR Standards**¹⁴⁵

Casement	Federal Standard EER	ENERGY STAR EER
Casement-only	<u>≥ 8.7</u>	<u>≥ 9.6</u>
Casement-slider	≥ 9.5	≥ 10.5

Table 2-63Table 2-63Table 2-64 lists the minimum federal efficiency standards and minimum ENERGY STAR efficiency standards for reverse-cycle RAC units.

¹⁴¹ Average demand savings based on engineering estimate.

¹⁴² Further research to update this value and CF is planned for 2014 TRM update.

¹⁴³ Based on data from PEPCO.

¹⁴⁴ ENERGY STAR Program Requirements for Room Air Conditioners.

Table 2-636361: Reverse-Cycle RAC Federal Minimum Efficiency Standards 146

Capacity (Btu/h)	Federal Standard EER, with louvered sides	ENERGY STAR EER, with louvered sides	Federal Standard EER, without louvered sides	ENERGY STAR EER, without louvered sides
< 14,000	2/2	2/2	<u>≥ 8.5</u>	<u>≥ 9.4</u>
<u>≥ 14,000</u>	<u>n/a</u>	<u>n/a</u>	≥ 8.0	≥ 8.8
< 20,000	≥ 9.0	≥ <u>9.9</u>	n/o	n/o
<u>≥ 20,000</u>	<u>≥ 8.5</u>	≥ 9.4	<u>n/a</u>	<u>n/a</u>

Table 2-64

<u>Table 2-64</u>Table 2-62 provides deemed EFLH by city and default energy savings values if efficiency and capacity information is unknown.

Table 2-646462: Deemed EFLH and Default Energy Savings 147148

City	<u>EFLH_{RAC}</u>	<u>∆kWh</u>
Allentown	<u>243</u>	<u>23</u>
<u>Erie</u>	<u>149</u>	<u>14</u>
Harrisburg	<u>288</u>	<u>27</u>
<u>Philadelphia</u>	<u>320</u>	<u>30</u>
<u>Pittsburgh</u>	<u>228</u>	<u>22</u>
<u>Scranton</u>	<u>193</u>	<u>18</u>
Williamsport	<u>204</u>	<u>19</u>

2.29.3 Measure Life

ENERGY STAR Room Air Conditioners: Measure Life = 9 years 149

2.29.4 Future Standards Changes

As of June 1, 2014 new room air conditioners must meet the federal standards given in Table 2-65Table 2-63, Table 2-66Table 2-66Table 2-64 and Table 2-67Table 2-67Table 2-65. Therefore the following baseline efficiencies will be effective as of the 2014 TRM.

Also, as of October 1, 2013 ENERGY STAR Room Air Conditioner Version 3.0 will take effect.

The new eligibility criteria are given in Table 2-65Table 2-65Table 2-63, Table 2-66Table

2-66Table 2-64 and Table 2-67Table 2-67Table 2-65. The new ENERGY STAR standards will be effective as of the 2014 TRM.

¹⁴⁶ Ibid.

¹⁴⁷ Values taken from ENERGY STAR calculator except for EFLH estimates, which can be found in Section 2.12 (Room AC Refirement)

AC Retirement).

148 Assumes 10,000 Btu/h capacity and 9.8 EER for baseline unit and 10.8 EER for ENERGY S TAR unit.

¹⁴⁹ ENERGY STAR Room Air Conditioner Savings Calculator. Accessed August 2012.

Table 2-656563: RAC Federal Minimum Efficiency and ENERGY STAR Version 3.0 Standards (effective 2014 TRM)¹⁵⁰

Capacity (Btu/h)	Federal Standard EER, with louvered sides	ENERGY STAR EER, with louvered sides	Federal Standard EER, without louvered sides	ENERGY STAR EER, without louvered sides
<u>< 6,000</u>	≥11.0	<u>11.2</u>	<u>10.0</u>	10.4
6,000 to 7,999	<u>=11.0</u>	11.2	10.0	<u>10.4</u>
8,000 to 10,999	≥10.9	<u>11.3</u>	<u>9.6</u>	
11,000 to 13,999	<u>≥10.9</u>	11.5	<u>9.5</u>	
14,000 to 19,999	<u>≥10.7</u>	<u>11.2</u>	<u>9.3</u>	<u>9.8</u>
20,000 to 24,999	≥9.4	0.0	0.4	
≥25,000	≥9.0	<u>9.8</u>	<u>9.4</u>	

Table 2-666664: Casement-Only and Casement-Slider RAC Federal Minimum Efficiency and ENERGY STAR Version 3.0 Standards (effective 2014 TRM)

Casement	Federal Standard EER	ENERGY STAR EER	
Casement-only	≥ 9. <u>5</u>	<u>≥ 10.0</u>	
Casement-slider	≥ 10.4	≥ 10.9	

Table 2-676765: Reverse-Cycle RAC Federal Minimum Efficiency Standards and ENERGY STAR Version 3.0 Standards (effective 2014 TRM)

Capacity (Btu/h)	Federal Standard EER, with louvered sides	ENERGY STAR EER, with louvered sides	Federal Standard EER, without louvered sides	ENERGY STAR EER, without louvered sides
< 14,000	n/a	2/2	<u>≥ 8.5</u>	<u>≥ 9.8</u>
<u>≥ 14,000</u>	<u>11/a</u>	<u>n/a</u>	≥ 8.0	<u>≥ 9.2</u>
< 20,000	≥ <u>9.0</u>	<u>≥ 10.4</u>	n/a	n/a
<u>≥ 20,000</u>	≥ 8. <u>5</u>	<u>≥ 9.9</u>	<u>11/a</u>	<u>11/a</u>

¹⁵⁰ Federal stanards: U.S. Department of Energy. Federal Register. 164th ed. Vol. 76, August 24, 2011.
ENERGY STAR standards: ENERGY STAR Program Requirements Product Specification for Room Air Conditioners.
Eligibility Criteria Version 3.0, June 22, 2012.

2.25 ENERGY STAR Appliances

2.25.1 Algorithms

The general form of the equation for the ENERGY STAR Appliance measure savings' algorithms is:

= Number of Units x Savings per Unit Total Savings

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by thenumber of appliance units. The number of units will be determined using market assessments and market tracking. Some of these market tracking mechanisms are under development. Perunit savings' estimates are derived primarily from a 2000 Market Update Report by RLW for National Grid's appliance program and from previous NEEP screening tool assumptions (clotheswashers).

ENERGY STAR Refrigerators:

$$\Delta kW_{peak}$$
 = DSav_{REF} X CF_{REF}

ENERGY STAR Clothes Washers:

ENERGY STAR Dishwashers:

ENERGY STAR Dehumidifiers:

ENERGY STAR Room Air Conditioners:

$$\Delta kW_{peak}$$
 = $DSav_{RAC} \times CF_{RAC}$

ENERGY STAR Freezer:

2.25.2 Definition of Terms

ESav _{rer}	= Flectricity savings per purchased ENERGY STAP refrigerator
LOUV REF	- Lieutholty savings per purchased Livered i 3 iArk reingerator.

ESav _{cw}	= Electricity savings per purchased ENERGY STAR clothes washer.
——————————————————————————————————————	- Summer demand savings per purchased ENERGY STAR-clothes washer.
ESav _{DW}	= Electricity savings per purchased ENERGY STAR dishwasher.
——————————————————————————————————————	= Summer demand savings per purchased ENERGY STAR dishwasher.
ESav _{DH}	= Electricity savings per purchased ENERGY STAR dehumidifier
——————————————————————————————————————	= Summer demand savings per purchased ENERGY STAR- dehumidifier
ESav _{RAC}	= Electricity savings per purchased ENERGY STAR room AC.
——————————————————————————————————————	= Summer demand savings per purchased ENERGY STAR room AC.
ESav _{FRE}	= Electricity savings per purchased ENERGY STAR freezer.
——————————————————————————————————————	= Summer demand savings per purchased ENERGY STAR- freezer.
CF _{REF,} CF _{CW,} CF _{DW,}	
CF _{DH} , CF _{RAC} , CF _{FRE}	= Demand Coincidence Factor (See Section 1.4). The coincidence of average appliance demand to summer system peak equals 1 for demand impacts for all appliances reflecting embedded coincidence in the DSav factor (except for room air conditioners where the CF is 58%).

Table 2-40: ENERGY STAR Appliances - References

Component	Туре	Value	Sources
ESav _{REF}	Fixed	See Table 2-41	9
DSav _{REF}	Fixed	0.0125 kW	4
ESav _{CW}	Fixed	See Table 2-41	9
DSav _{CW}	Fixed	0.0147 kW	3
ESav _{DW}	Fixed	See Table 2-41	9
DSav _{DW}	Fixed	0.0225	4
ESav _{DH}	Fixed	See Table 2-41	9
DSav _{DH}	Fixed	0.0098 kW	7
ESav _{RAC}	Fixed	See Table 2-41	9
DSav _{RAC}	Fixed	0.1018 kW	5
CF _{REF} , CF _{CW} , CF _{DW} , CF _{DH} , CF _{RAC} , CF _{FRE}	Fixed	1.0, 1.0, 1.0, 1.0, 0.58, 1.0	6
ESavere	Fixed	See Table 2-41	9
DSavere	Fixed	0.0113	8

Sources:

1. ENERGY STAR Refrigerator Savings Calculator (Calculator updated: 2/15/05; Constants updated 05/07). Demand savings derived using refrigerator load shape.

Time period allocation factors used in cost-effectiveness analysis. From residential appliance-load shapes.

Energy and water savings based on Consortium for Energy Efficiency estimates. Assumes 75%-of participants have gas water heating and 60% have gas drying (the balance being electric). Demand savings derived using NEEP screening clothes washer load shape.

Energy and water savings from RLW Market Update. Assumes 37% electric hot water market share and 63% gas hot water market share. Demand savings derived using dishwasher load-shape.

Average demand savings based on engineering estimate.

Coincidence factors already embedded in summer peak demand reduction estimates with the exception of RAC. RAC CF is based on data from PEPCO.

Conservatively assumes same kW/kWh ratio as Refrigerators.

Efficiency Vermont. Technical Reference User Manual: Measure Savings Algorithms and Cost-Assumptions (July 2008).

Values are taken from the ENERGY STAR Savings Calculators or, if a given configuration is not-listed in the ENERGY STAR Savings Calculator, an average of all models of a given configuration from ENERGY STAR Refrigerators Qualified Products list. The ENERGY STAR Savings

Calculator and ENERGY STAR Refrigerators Qualified Products list can be found atwww.energystar.gov.

Table 2-41: Energy Savings from ENERGY STAR-

Measure	Energy Savings
Refrigerator	
Manual Defrost	95 kWh
Partial Automatic Defrost	95 kWh
Top mount freezer without door ice	106 kWh
Side mount freezer without door ice	127 kWh
Bottom mount freezer without door ice	116 kWh
Bottom mount freezer with door ice	154 kWh
Top mount freezer with door ice	124 kWh
Side mount freezer with door ice	133 kWh
Refrigerator only - single door without ice	104 kWh
Refrigerator/Freezer – single door	105 kWh
Freezers	
Upright with manual defrost	47 kWh
Upright-with automatic defrost	67 kWh
Chest Freezer	42 kWh
Compact Upright with manual defrost	53kWh
Compact Upright with automatic defrost	71 kWh
Compact Chest Freezer	45kWh
Dehumidifier	
1-25 pints/day	54 kWh
25-35 pints/day	117 kWh
35-45 pints/day	213 kWh
45-54 pints/day	297 kWh
54-75 pints/day	185 kWh
75-185 pints/day	374 kWh

Measure	Energy Savings		
Room Air Conditioner (Load hours in parentheses)			
Allentown	74 kWh (784 hours)		
Erie	46 kWh (482 hours)		
Harrisburg	88 kWh (929 hours)		
Philadelphia	98 kWh (1032 hours)		
Pittsburgh	70 kWh (737 hours)		
Scranton	59 kWh (621 hours)		
Williamsport	62 kWh (659 hours)		
Dishwasher			
With Gas Water Heater	77 kWh		
With Electric Water Heater	137 kWh		
Clothes Washer			
Gas Water Heater and Gas Dryer or No Dryer	24 kWh		
Gas Water Heater and Electric Dryer	97 kWh		
Electric Water Heater and Electric Dryer	224 kWh		
Electric Water Heater and Gas Dryer or No Dryer	141 kWh		

For dishwashers and clothes washers where fuel mix is unknown, calculate default savings using the algorithms below and EDC specific saturation values derived from residential appliance saturation study information (or similar studies). For EDCs where saturation information is not accessible, use a simple average (107 kWh for dishwashers and 122 kWh for clothes washers). 454

¹⁶¹ According to information submitted by EDCs, fuel mix varies greatly across different territories (e.g. Duquesne reported 90/10 split between gas and electric water heating, whereas PECO reported a 69/31 split and PPL reported a 49/51 split. This extreme differential behooves EDC specific values.

%GWH-ED _{GW}	= Percent of clothes washers with gas water heater and electric dryer fuel
%EWH-G D _{cw}	= Percent of clothes washers with gas water heater and non- electric or no dryer fuel
%EWH-ED _{CW}	= Percent of clothes washers with gas water heater and electric dryer fuel

ENERGY STAR Lighting 2.262.30

2.26.12.30.1 Algorithms

Savings from installation of screw-in ENERGY STAR CFLs, ENERGY STAR fluorescent torchieres, ENERGY STAR indoor fixtures and ENERGY STAR outdoor fixtures are based on a straightforward algorithm that calculates the difference between existing and new wattage and the average daily hours of usage for the lighting unit being replaced. An "in-service" rate is used to reflect the fact that not all lighting products purchased are actually installed.

An adjustment to the baseline is also made to account for the Energy Independence and Security Act of 2007 (EISA 2007), which requires that all general service lamps between 40 W and 100 W meet minimum efficiency standards in terms of amount of light delivered per unit of energy consumed. The standard is phased in over two years, between January 1, 2012 and January 1, 2014. This adjustment affects ENERGY STAR CFLs, ENERGY STAR Torchieres, ENERGY STAR Indoor Fixtures, ENERGY STAR Outdoor Fixtures and ENERGY STAR Ceiling Fans where the baseline condition is assumed to be a standard incandescent light bulb.

The general form of the equation for the ENERGY STAR or other high-efficiency lighting energy savings algorithm is:

Total Savings = Number of Units X Savings per Unit

Per unit savings estimates are derived primarily from a 2004 Nexus Market Research report evaluating similar retail lighting programs in New England (MA, RI and VT)

ENERGY STAR CFL Bulbs (screw-in):

```
∆kWh
                                                      = (Watts<sub>base</sub> - Watts<sub>CFL</sub>) X CFL<sub>hours</sub> X 365 / 1000 X ISR<sub>CFL</sub>
```

$$\Delta kW_{peak}$$
 = (Watts_{base} – Watts_{CFL}) / 1000 X CF X ISR_{CFL}

ENERGY STAR Torchieres:

$$\triangle kWh$$
 = $(Watts_{base} - Watts_{Torch})$ $Torch_{watts} - X Torch_{hours} X 365 / 1000 X$

$$\Delta kW_{peak}$$
 = (Watts_{base - Watts_{Torch}}) Torch_{watts} / 1000 X CF X ISR_{Torch}

ENERGY STAR Indoor Fixture (hard-wired, pin-based):

```
= (Watts<sub>base</sub> - Watts<sub>IF</sub>) <del>IF</del><sub>watts</sub>-X IF<sub>hours</sub> X 365 / 1000 X ISR<sub>IF</sub>
\Delta kWh
```

$$\Delta kW_{peak}$$
 = $\underline{(Watts_{base} - Watts_{IF})}$ $+F_{watts}$ / 1000 X CF X ISR_{IF}

ENERGY STAR Outdoor Fixture (hard wired, pin-based):

```
\Delta kWh
                                                             = (Watts<sub>base</sub> - Watts<sub>OF</sub>) OF<sub>watts</sub> X OF<sub>hours</sub> X 365 / 1000 X ISR<sub>OF</sub>
```

 ΔkW_{peak} = (Watts_{base} - Watts_{OF}) OF_{watts}-/ 1000 X CF X ISR_{OF}

Ceiling Fan with ENERGY STAR Light Fixture:

 ΔkWh = (Watts_{Pase} - Watts_{Fan}) X Fan_{hours} X 365/1000 X ISR_{Fan}180 kWh

 ΔkW_{peak} = $\underline{(Watts_{base} - Watts_{Fan}) / 1000 \times CF \times ISR_{Fan} 0.01968}$

2.26.22.30.2 Definition of Terms

Watts_{base} = Wattage of baseline case <u>lamp/fixturefor CFL</u>. For general

service lamps prior to EISA 2007 standards, use equivalent incandescent bulb wattage. For general service lamps past EISA 2007 standards, use new standards to determine wattage. See

Table 2-69Table 2-69Table 2-67Table 2-43.

 $Watts_{CFL}$ = Wattage of CFL

 CFL_{hours} = Average hours of use per day per CFL

 ISR_{CFL} = In-service rate per CFL.

<u>Watts_{Torch}Torch_{watts}</u> = <u>Wattage of Average delta watts per purchased ENERGY</u>

STAR torchiere

Torch_{hours} = Average hours of use per day per torchiere

 ISR_{Torch} = In-service rate per Torchiere

<u>Watts_{IF}IF_{watts}</u> = <u>Wattage of Average delta watts per purchased ENERGY</u>

STAR Indoor Fixture

 IF_{hours} = Average hours of use per day per Indoor Fixture

 ISR_{IF} = In-service rate per Indoor Fixture

Watts_{OF}OF_{watts} = Wattage of Average delta watts per purchased ENERGY

STAR Outdoor Fixture

 OF_{hours} = Average hours of use per day per Outdoor Fixture

ISR_{OF} = In-service rate per Outdoor Fixture

CF = Demand Coincidence Factor (See Section 1.4)

<u>Watts_{Fan}AkWh</u> = <u>Wattage of ENERGY STAR Ceiling Fan light fixture</u>Gross

customer annual kWh savings for the measure

<u>Fan_{hours} AkW</u> = <u>Average hours of use per day per Ceiling Fan light</u>

fixtureGross customer connected load kW savings for the

neasure

<u>ISR</u>_{Fan} = <u>In-service rate per Ceiling Fan fixture</u>

Table 2-686842: ENERGY STAR Lighting - References

Component	Туре	Value	Sources
Watts _{base}	Variable	See Table 2-69Table 2-69Error! Reference source not found.Error! Reference source not found.Table 2-67Table 2-43	Table 2-69Table 2-69Error! Reference source not found.Error! Reference source not found.Table 2-67Table 2-43
Watts _{CFL}	Variable	Data Gathering	Data Gathering
CFL _{hours}	Fixed	<u>2.8</u> 3.0	<u>5</u> 6
ISR _{CFL}	Fixed	84% ¹⁵²	<u>2</u> 3
Watts _{Torch} Torch _{watts}	<u>Variable</u> Fixed	Data Gathering115.8	Data Gathering1
Torch _{hours}	Fixed	3.0	<u>1</u> 2
ISR _{Torch}	Fixed	83%	<u>2</u> 3
Watts _{IF} IF _{watts}	<u>Variable</u> Fixed	Data Gathering48.7	Data Gathering1
IF _{hours}	Fixed	2.6	<u>1</u> 2
ISR _{IF}	Fixed	95%	<u>2</u> 3
Watts _{OF} OF _{watts}	<u>Variable</u> Fixed	Data Gathering94.7	Data Gathering1
OF _{hours}	Fixed	4.5	<u>1</u> 2
ISR _{OF}	Fixed	87%	<u>2</u> 3
CF	Fixed	5%	<u>3</u> 4
<u>Watts_{Fan}AkWh</u>	<u>Variable</u> Fixed	Data Gathering180 kWh	Data Gathering5
<u>Fan</u> hours	Fixed	<u>3.5</u>	4
<u>ISR_{Fan}AkW</u>	<u>Fixed</u> Fixed	<u>95%</u> 0.01968	<u>4</u> 5

Sources:

- 1. Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 43-(Table 4-9)
- 2.1. Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, Ibid. p. 104 (Table 9-7). This table adjusts for differences between logged sample and the much larger telephone survey sample and should, therefore, have less bias.

¹⁵² Subject to verification through evaluation. The value can be updated if evaluation findings reveal a value that differs from the default.

- 3-2. Ibid. p. 42 (Table 4-7). These values reflect both actual installations and the % of units planned to be installed within a year from the logged sample. The logged % is used because the adjusted values (to account for differences between logging and telephone survey samples) were not available for both installs and planned installs. However, this seems appropriate because the % actual installed in the logged sample from this table is essentially identical to the % after adjusting for differences between the logged group and the telephone sample (p. 100, Table 9-3).
- 4.3. RLW Analytics, "Development of Common Demand Impacts for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)", prepared for the New England State Program Working Group (SPWG), March 25, 2007, p. IV.
- 4. ENERGY STAR Ceiling Fan Savings Calculator (Calculator updated April 2009). Hours based on ENERGY STAR calculator for the Mid-Atlantic region defer to this value since it is recognized that ceiling fans are generally installed in high-use areas such as kitchens, living rooms and dining rooms. Ceiling fans are also installed in bedrooms, but the overall average HOU for this measure is higher than the average of all CFLs (2.8) and indoor fixtures (2.6) since these values incorporate usage in low-use areas such as bathrooms and hallways where ceiling fans are generally not installed.
- Nexus Market Research, "Residential Lighting Markdown Impact Evaluation", Final Report, January 20, 2009. Table 6-1.

Additionally, the following studies were reviewed and analyzed to support the "Residential Lighting Markdown Inpact Evaluation":

- Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004. Table 9-7.
- CFL Metering Study, Final Report. Prepared for PG&E, SDG&E, and SCE by KEMA, Inc. February 25, 2005. Table 4-1.
- Nexus Market Research, ""Process and Impact Evaluation of the Efficiency Maine Lighting Program"", April 2007. Table 1-7."
- Nexus Market Research, "Residential Lighting Markdown Impact Evaluation", Final Report, January 20, 2009. Table 6-1.
- KEMA, Inc., "Final Evaluation Report: Upstream Lighting Program." Prepared from the California Public Utilities Commission, Febuary 8, 2010. Table 18.
- Itron, Inc. "Verification of Reported Energy and Peak Savings from the EmPOWER
 Maryland Energy Efficiency Programs." Prepared for the Maryland Public Service
 Commission, April 21, 2011. Table 3-6.
- TecMarket Works, "Duke Energy Residential Smart Saver CFL Program in North Carolina and South Carolina", February 2011. Table 29.

- Rev Date: June 20122013 (DRAFT)

- Glacier Consulting Group, LLC. "Adjustments to CFL Operating Hours-Residential."
 Memo to Oscar Bloch, Wisconsin DOA. June 27, 2005.
- New Jersey's Clean Energy Program Residential CFL Impact Evaluation and Protocol Review. KEMA, Inc. September 28, 2008. pg. 21.
- Efficiency Vermont. Technical Reference User Manual: Measure Savings Algorithms and Cost Assumptions (July 2008).
- 6. US Department of Energy, Energy Star Calculator. Accessed 3-16-2009.

Minimum Lumens	Maximum Lumens	Incandescent Equivalent Watts _{Base} (Pre-EISA 2007)	Watts _{Base} (Post-EISA 2007)	Post-EISA 2007 Effective Date
(a)	(b)	(c)	(d)	(e)
1490	2600	100	72	2012 TRM
1050	1489	75	53	2013 TRM
750	1049	60	43	2014 TRM
310	749	40	29	2014 TRM

Table 2-696943. Baseline Wattage by Lumen Output of CFL153

To determine the Watts_{Base} for a non-specialty CFLlamp, ¹⁵⁴,, follow these steps:

- Identify the <u>ENERGY STAR CFL</u>, <u>Torchiere</u>, <u>Indoor Fixture or Outdoor Fixture's CFL's</u> rated lumen output
- 2. In <u>Table 2-69Table 2-69Table 2-67Table 2-43</u>, find the lumen range into which the <u>CFL</u> lamp falls (see columns (a) and (b).
- Find the baseline wattage (Watts_{Base}) in column (c) or column (d). Values in column (c) are used for Watts_{Base} until the TRM listed under column (e) is effective. Afterwards, values in column (d) are used for Watts_{Base}.

In the absence of EDC data gathering, the default savings for ENERGY STAR Torchieres, Indoor Fixtures and Outdoor Fixtures are listed in the Table 2-70: Default Savings for ENERGY STAR

¹⁵³ United States Department of Energy. Impact of EISA 2007 on General Service Incandescent Lamps: FACT SHEET. http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/general_service_incandescent_factsheet.pdf

¹⁵⁴ The EISA 2007 standards apply to general service incandescent lamps. A non-specialty CFL is considered any lamp that does not replace one of the 22 incandescent lamps exempt from the EISA 2007 standards.. A complete list of the 22 incandescent lamps exempt from EISA 2007 is listed in the United States Department of *Energy Impact of EISA 2007 on General Service Incandescent Lamps: FACT SHEET*.

Indoor Fixtures, ENERGY STAR Outdoor Fixtures and ENERGY STAR Torchieres (per fixture) Table 2-70.

Table 2-707968: Default Savings for ENERGY STAR Indoor Fixtures, ENERGY STAR Outdoor Fixtures and ENERGY STAR Torchieres (per fixture)155

	<u>Torchiere</u>	Indoor Fixture	Outdoor Fixture
<u>∆kWh</u>	<u>65.0</u>	<u>27.1</u>	<u>83.6</u>
∆kWh _{peak}	0.0030	<u>0.0014</u>	0.0025

In the absence of EDC data gathering, the deemed savings for ENERGY STAR Ceiling Fans are listed in Table 2-71Table 2-71Table 2-69. 156

Table 2-717169: Default Savings for ENERGY STAR Ceiling Fans Light Fixtures (per fixture)

<u>∆kWh</u>	<u>∆kWh</u> _{peak}	Effective Date
<u>146</u>	<u>0.0057</u>	<u>2013 TRM</u>
<u>84</u>	0.0033	<u>2014 TRM</u>

¹⁸⁵ Source of change in watts(before adjusting for EISA 2007) between the baseline and efficient case is Nexus Market.
Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs",
Final Report, October 1, 2004, p. 43 (Table 4-9). Adjustment to account for EISA 2007 standards based on Mid-Atlantic TRM, version 2.0. Prepared by Vermont Energy Investment Corporation. Facilitated and managed by the Northeast
Energy Efficiency Partnerships, July 2011.

Adjustment made by calculating an average adjustment factor (61.77%) for all incandescent bulbs that EISA affectsand applying at the midpoint of the three year EISA phase-in (2013). As an example of an adjustment factor, the 100 W incandescent the baseline is 72 watts post-EISA and the CFL equivalent assumption is a 25.3 watt CFL. Therefore the adjustment factor is calculated as follows(72-25.3)/(100-25.3)*100= 62.5%.

The "Equivalent CFL Wattage" is calculated using a ratio of 3.95. This is calculated assuming that the average wattage of a CFL is 15.5W and the replacement incandescent bulb is 61.2W (ratio of 3.95 to 1), RLW Analytics, New England Residential Lighting Markdown Impact Evaluation, January 20, 2009.

¹⁵⁶ Effective date is the date when EISA 2007 standards are incorporated. The baseline assumption is three 60 watt (ENERGY STAR Ceiling Fans Savings Calculator) incandescent lamps and therefore the EISA 2007 affects this measure beginning 2014.

2.272.31 ENERGY STAR Windows

2.27.12.31.1 Algorithms

The general form of the equation for the ENERGY STAR or other high-efficiency windows energy savings' algorithms is:

Total Savings = Square Feet of Window Area X Savings per Square Foot

To determine resource savings, the per-square-foot estimates in the algorithms will be multiplied by the number of square feet of window area. The number of square feet of window area will be determined using market assessments and market tracking. Some of these market tracking mechanisms are under development. The per-unit energy and demand savings estimates are based on prior building simulations of windows.

Savings' estimates for ENERGY STAR Windows are based on modeling a typical 2,500 square foot home using REM Rate, the home energy rating tool. Savings are per square foot of qualifying window area. Savings will vary based on heating and cooling system type and fuel. These fuel and HVAC system market shares will need to be estimated from prior market research efforts or from future program evaluation results.

Heat Pump HVAC System:

 ΔkWh = $ESav_{HP}$

 ΔkW_{peak} = $DSav_{HP}XCF$

Electric Heat/Central Air Conditioning:

 $\triangle kWh$ = $ESav_{RES/CAC}$

 ΔkW_{peak} = $DSav_{CAC}XCF$

Electric Heat/No Central Air Conditioning:

 ΔkWh = $ESav_{RES/NOCAC}$

 ΔkW_{peak} = $DSav_{NOCAC}XCF$

2.27.22.31.2 Definition of Terms

ESav_{HP} = Electricity savings (heating and cooling) with heat pump

installed.

ESav_{RES/CAC} = Electricity savings with electric resistance heating and central

AC installed.

ESav_{RES/NOCAC} = Electricity savings with electric resistance heating and no

central AC installed.

ENERGY STAR Windows

Page 149

¹⁵⁷ Energy Information Administration. Residential Energy Consumption Survey. 2005. http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/detailed_tables2005.html

 $DSav_{HP}$ = Summer demand savings with heat pump installed.

 $DSav_{CAC}$ = Summer demand savings with central AC installed.

 $DSav_{NOCAC}$ = Summer demand savings with no central AC installed.

CF = Demand Coincidence Factor (See Section 1.4)

Table 2-727244: ENERGY STAR Windows - References

Component	Туре	Value	Sources
ESav _{HP}	Fixed	2.2395 kWh/ft ²	1
HP Time Period Allocation Factors	Fixed	Summer/On-Peak 10% Summer/Off-Peak 7% Winter/On-Peak 40% Winter/Off-Peak 44%	2
ESav _{RES/CAC}	Fixed	4.0 kWh/ft ²	1
Res/CAC Time Period Allocation Factors	Fixed	Summer/On-Peak 10% Summer/Off-Peak 7% Winter/On-Peak 40% Winter/Off-Peak 44%	2
ESav _{RES/NOCAC}	Fixed	3.97 kWh/ft ²	1
Res/No CAC Time Period Allocation Factors	Fixed	Summer/On-Peak 3% Summer/Off-Peak 3% Winter/On-Peak 45% Winter/Off-Peak 49%	2
DSav _{HP}	Fixed	0.000602 kW/ft ²	1
DSav _{CAC}	Fixed	0.000602 kW/ft ²	1
DSav _{NOCAC}	Fixed	0.00 kW/ft ²	1
CF	Fixed	0.75	3

Sources:

- 1. From REMRATE Modeling of a typical 2,500 sq. ft. NJ home. Savings expressed on a per-square-foot of window area basis. New Brunswick climate data.
- 2. Time period allocation factors used in cost-effectiveness analysis.
- 3. Based on reduction in peak cooling load.
- 4. Prorated based on 12% of the annual degree days falling in the summer period and 88% of the annual degree days falling in the winter period.

2.282.32 ENERGY STAR Audit

2.28.12.32.1 Algorithms

No algorithm was developed to measure energy savings for this program. The purpose of the program is to provide information and tools that residential customers can use to make decisions about what actions to take to improve energy efficiency in their homes. Many measure installations that are likely to produce significant energy savings are covered in other programs. These savings are captured in the measured savings for those programs. The savings produced by this program that are not captured in other programs would be difficult to isolate and relatively expensive to measure.

ENERGY STAR Audit Page 1

2.292.33 Home Performance with ENERGY STAR

In order to implement Home Performance with ENERGY STAR, there are various standards a program implementer must adhere to in order to deliver the program. The program implementer must use software that meets a national standard for savings calculations from whole-house approaches such as home performance. The software program implementer must adhere to at least one of the following standards:

 A software tool whose performance has passed testing according to the National Renewable Energy Laboratory's HERS BESTEST software energy simulation testing protocol.¹⁵⁸

Software approved by the US Department of Energy's Weatherization Assistance Program.¹⁵⁹ RESNET approved rating software.¹⁶⁰

There are numerous software packages that comply with these standards. Some examples of the software packages are REM/Rate, EnergyGauge, TREAT, and HomeCheck. The HomeCheck software is described below as an example of a software that can be used to determine if a home qualifies for Home Performance with ENERGY STAR.

2.29.12.33.1 HomeCheck Software Example

Conservation Services Group (CSG) implements Home Performance with ENERGY STAR in several states. CSG has developed proprietary software known as HomeCheck which is designed to enable an energy auditor to collect information about a customer's site and based on what is found through the energy audit, recommend energy savings measures and demonstrate the costs and savings associated with those recommendations. The HomeCheck software is also used to estimate the energy savings that are reported for this program.

CSG has provided a description of the methods and inputs utilized in the HomeCheck software to estimate energy savings. CSG has also provided a copy of an evaluation report prepared by Nexant which assessed the energy savings from participants in the Home Performance with ENERGY STAR Program managed by the New York State Energy Research and Development Authority (NYSERDA)¹⁶¹. The report concluded that the savings estimated by HomeCheck and reported to NYSERDA were in general agreement with the savings estimates that resulted from the evaluation.

These algorithms incorporate the HomeCheck software by reference which will be utilized for estimating energy savings for Home Performance with ENERGY STAR. The following is a summary of the HomeCheck software which was provided by CSG: CSG's HomeCheck software was designed to streamline the delivery of energy efficiency programs. The software provides the energy efficiency specialist with an easy-to-use guide for data collection, site and HVAC testing

15

¹⁵⁸ A new standard for BESTEST-EX for existing homes is currently being deveoped - status is found at http://www.nrel.gov/buildings/bestest_Ex.html. The existing 1995 standard can be found at http://www.nrel.gov/docs/legosti/fy96/7332a.pdf.

 $^{^{159}}$ A listing of the approved software available at http://www.waptac.org/si.asp?id=736 .

 $^{^{160}}$ A listing of the approved software available at $\underline{\text{http://resnet.us}}$

¹⁶¹ M&V Evaluation, Home Performance with Energy Star Program, Final Report, Prepared for the New York State Energy Research and Development Authority, Nexant, June 2005.

algorithms, eligible efficiency measures, and estimated energy savings. The software is designed to enable an auditor to collect information about customers' sites and then, based on what he/she finds through the audit, recommend energy-saving measures, demonstrate the costs and savings associated with those recommendations. It also enables an auditor/technician to track the delivery of services and installation of measures at a site.

This software is a part of an end-to-end solution for delivering high-volume retrofit programs, covering administrative functions such as customer relationship management, inspection scheduling, sub-contractor arranging, invoicing and reporting. The range of existing components of the site that can be assessed for potential upgrades is extensive and incorporates potential modifications to almost all energy using aspects of the home. The incorporation of building shell, equipment, distribution systems, lighting, appliances, diagnostic testing and indoor air quality represents a very broad and comprehensive ability to view the needs of a home.

The software is designed to combine two approaches to assessing energy savings opportunities at the site. One is a measure specific energy loss calculation, identifying the change in use of BTU's achieved by modifying a component of the site. Second, is the correlation between energy savings from various building improvements, and existing energy use patterns at a site. The use of both calculated savings and the analysis of existing energy use patterns, when possible, provides the most accurate prescription of the impact of changes at the site for an existing customer considering improvements on a retrofit basis.

This software is not designed to provide a load calculation for new equipment or a HERS rating to compare a site to a standard reference site. It is designed to guide facilities in planning improvements at the site with the goal of improved economics, comfort and safety. The software calculates various economic evaluations such as first year savings, simple payback, measure life cost-effectiveness, and Savings-to-Investment ratio (SIR).

2.29.22.33.2 Site-Level Parameters and Calculations

There are a number of calculations and methodologies that apply across measures and form the basis for calculating savings potentials at a site.

2.29.32.33.3 Heating Degree Days and Cooling Degree Hours

Heat transfer calculations depend fundamentally on the temperature difference between inside and outside temperature. This temperature difference is often summarized on a seasonal basis using fixed heating degree-days (HDD) and cooling degree-hours (CDH). The standard reference temperature for calculating HDD (the outside temperature at which the heating system is required), for example, has historically been 65°F. Modern houses have larger internal gains and more efficient thermal building envelopes than houses did when the 65°F standard was developed, leading to lower effective reference temperatures. This fact has been recognized in ASHRAE Fundamentals, which provides a variable-based degree-day method for calculating energy usage. CSG's Building Model calculates both HDD and CDH based on the specific characteristics and location of the site being treated.

2.29.42.33.4 Building Loads, Other Parameters, and the Building Model

CSG is of the opinion that, in practice, detailed building load simulation tools are quite limited in their potential to improve upon simpler approaches due to their reliance on many factors that are

not measurable or known, as well as limitations to the actual models themselves. Key to these limitations is the Human Factor (e.g., sleeping with the windows open; extensive use of high-volume extractor fans, etc.) that is virtually impossible to model. As such, the basic concept behind the model was to develop a series of location specific lookup tables that would take the place of performing hourly calculations while allowing the model to perform for any location. The data in these tables would then be used along with a minimum set of technical data to calculate heating and cooling building loads.

In summary, the model uses:

- Lookup tables for various parameters that contain the following values for each of the 239 TMY2 weather stations:
 - a. Various heating and cooling infiltration factors.
 - b. Heating degree days and heating hours for a temperature range of 40 to 72°F.
 - c. Cooling degree hours and cooling hours for a temperature range of 68 to 84°F.
 - d. Heating and cooling season solar gain factors.
- Simple engineering algorithms based on accepted thermodynamic principles, adjusted to reflect known errors, the latest research and measured results
- 3. Heating season iterative calculations to account for the feedback loop between conditioned hours, degree days, average "system on" indoor and outdoor temperatures and the building
- 4. The thermal behavior of homes is complex and commonly accepted algorithms will on occasion predict unreasonably high savings, HomeCheck uses a proprietary methodology to identify and adjust these cases. This methodology imposes limits on savings projected by industry standard calculations, to account for interactivities and other factors that are difficult to model. These limits are based on CSG's measured experience in a wide variety of actual installations.

2.29.52.33.5 Usage Analysis

The estimation of robust building loads through the modeling of a building is not always reliable. Thus, in addition to modeling the building, HomeCheck calculates a normalized annual consumption for heating and cooling, calculated from actual fuel consumption and weather data using a Seasonal Swing methodology. This methodology uses historic local weather data and site-specific usage to calculate heating and cooling loads. The methodology uses 30-year weather data to determine spring and fall shoulder periods when no heating or cooling is likely to be in use. The entered billing history is broken out into daily fuel consumption, and these daily consumption data along with the shoulder periods is used to calculate base load usage and summer and winter seasonal swing fuel consumption.

2.29.62.33.6 Multiple HVAC Systems

HVAC system and distribution seasonal efficiencies are used in all thermal-shell measure algorithms. HVAC system and distribution seasonal efficiencies and thermostat load reduction adjustments are used when calculating the effect of interactivity between mechanical and architectural measures. If a site has multiple HVAC systems, weighted average seasonal

efficiencies and thermostat load reduction adjustments are calculated based on the relative contributions (in terms of percent of total load) of each system.

2.29.72.33.7 Multiple Heating Fuels

It is not unusual to find homes with multiple HVAC systems using different fuel types. In these cases, it is necessary to aggregate the NACs for all fuel sources for use in shell savings algorithms. This is achieved by assigning a percentage contribution to total NAC for each system, converting this into BTU's, and aggregating the result. Estimated first year savings for thermal shell measures are then disaggregated into the component fuel types based on the pre-retrofit relative contributions of fuel types.

2.29.82.33.8 Interactivity

To account for interactivity between architectural and mechanical measures, CSG's HomeCheck employs the following methodology, in order:

- Non-interacted first year savings are calculated for each individual measure.
- 2. -Non-interacted SIR (RawSIR) is calculated for each measure.
- 3. -Measures are ranked in descending order of RawSIR,
- 4. -Starting with the most cost-effective measure (as defined by RawSIR), first year savings are adjusted for each measure as follows:
 - a. Mechanical measures (such as thermostats, HVAC system upgrades or distribution system upgrades) are adjusted to account for the load reduction from measures with a higher RawSIR.
 - b. Architectural measures are adjusted to account for overall HVAC system efficiency changes and thermostat load reduction changes. Architectural measures with a higher RawSIR than that of HVAC system measures are calculated using the existing efficiencies. Those with RawSIR's lower than that of heating equipment use the new heating efficiencies.
- Interacted SIR is then calculated for each measure, along with cumulative SIR for the entire job.
- 6. All measures are then re-ranked in descending order of SIR.
- 7. The process is repeated, replacing RawSIR with SIR until the order of measures does not change.

2.29.92.33.9 Lighting

Quantification of additional savings due to the addition of high efficiency lighting will be based on the applicable algorithms presented for these appliances in the ENERGY STAR Lighting Algorithms section found in ENERGY STAR Products.

2.302.34 ENERGY STAR Televisions (Versions 4.1 and 5.1)

This measure applies to the purchase of an ENERGY STAR TV meeting Version 5.3 4.1 or Version 5.1 standards. Version 4.1 standards are effective as of May 1, 2010, and Version 5.43 standards are effective as of May 1, 2012 September 30, 2011. Additionally, in 2012 ENERGY STAR introduced the ENERGY STAR Most Efficient designation, which recognizes the most efficient of the ENERGY STAR qualified televisions.

The baseline equipment is a TV meeting ENERGY STAR Version 3.0 requirements 162.

2.30.12.34.1 Algorithms

Energy Savings (per TV):

$$\Delta kWh = \sqrt{\frac{(W_{base, active} - W_{ES, active})}{1000}} \times HOURS_{active} \times 365$$

Coincident Demand Savings (per TV):

$$\Delta kW = \frac{\int (W_{\text{base,active}} - W_{\text{ES, active}})}{1000} \times CF$$

Savings calculations are based on power consumption while the TV is in active mode only, as requirements for standby power are the same for both baseline and new units.

2.30.22.34.2 Definition of Terms

 $W_{\it base,active}$

	turned on and operating).
W _{ES,active}	= power use (in Watts) of ENERGY STAR Version <u>5.3 or</u> <u>ENERGY STAR Most Efficient 4.1 or 5.1</u> TV while in active mode (i.e. turned on and operating).
HOURS _{active}	= number of hours per day that a typical TV is active (turned on and in use).

= power use (in Watts) of baseline TV while in active mode (i.e.

CF = Demand Coincidence Factor (See Section 1.4)

365 = days per year.

Table 2-737345: ENERGY STAR TVs - References

Component	Туре	Value	Source
CF	Fixed	0.28	1
HOURS _{active}	Fixed	5	2

¹⁶² This baseline assumption is made because there is no federal standard that specifies minimum TV efficiencies. ENERGY STAR Version 3.0 predates Version 4.1 standards.

Sources:

- Deemed Savings Technical Assumptions, Program: ENERGY STAR Retailer Incentive Pilot Program, accessed October 2010,
 - $\underline{\text{http://www.xcelenergy.com/SiteCollectionDocuments/docs/ES-Retailer-Incentive-60-day-Tech-Assumptions.pdf}$
- Calculations assume TV is in active mode (or turned on) for 5 hours per day and standby mode for 19 hours per day. Based on assumptions from ENERGY STAR Calculator, Life Cycle Cost Estimate for 100 ENERGY STAR Qualified Television(s), accessed October 2010

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Televisions_Bulk.xls

Table 2-747446: ENERGY STAR TVs Version 5.3 4.1 and 5.1 maximum power consumption

Screen Area ¹⁶³ (square inches)	Maximum Active Power (W _{ES,active}) Version 5.43 ¹⁶⁴
A < 275	P _{max} = 0.130 * A +5
275 ≤ A ≤ 1068	P _{max} = 0.084 * A +18
A > 1068	P _{max} = 108

ENERGY STAR Most Efficient Televisions must meet all of the program requirments of ENERGY STAR Version 5.3 as well as the following additional requirement. 165

 $P_{\text{max}} = 82 * \text{TANH}(0.00084(A-150)+0.05)+12.75$

Where TANH is the hyperbolic tangent function.

¹⁶³ 16:9 aspect ratio is assumed for TV viewable screen size (to convert from diagonal dimensions to viewable screen area). *ENERGY STAR Program Requirements for Televisions, Partner Commitments Versions* 4.1 and 5.13, accessed October 2010August 2012,

http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/television/V5.3 Program Requirements.pd f?08d8-61adhttp://www.energystar.gov/ia/partners/product_specs/program_reqs/tv_vcr_prog_req.pdf lbid.

¹⁶⁵ ENERGY STAR Most Efficient Eligibility Criteria for Recognition Televisions, accessed August 2012. http://www.energystar.gov/ia/partners/downloads/Televisions_Criteria_ME_2012.pdf

Table 2-757547: TV power consumption

Diagonal Screen Size (inches) ¹⁶⁶	Baseline Active Power Consumption [W _{base,active}] ¹⁶⁷	ENERGY STAR V. 5.1 Active Power Consumption [W _{ES,active}] ¹⁶⁸	ENERGY STAR Most Efficient Power Consumption [WES,active]
< 20	51	17	<u>13</u>
20 < 30	85	40	<u>25</u>
30 < 40	137	62	<u>41</u>
40 < 50	235	91	<u>60</u>
50 < 60	353	108*	<u>76</u>
≥ 60	391	108*	<u>86</u>

^{*} P_{max} = 108W

2.30.32.34.3 _Deemed Savings

Deemed annual energy savings for ENERGY STAR Version 4.1 and 5.1-3 and ENERGY STAR Most Efficient TVs are given in Table 2-76Table 2-76Table 2-74Table 2-48. Coincident demandsavings are given in Table 2-49.

Table 2-767648: Deemed energy savings for ENERGY STAR Version 4.1 and 5.1-3 and ENERGY STAR Most Efficient TVs.

Diagonal Screen Size (inches) ¹⁶⁹	Energy Savings ENERGY STAR V. 5.1 TVs (kWh/year)	Energy Savings ENERGY STAR Most Efficient TVs (kWh/yr)
< 20	62	<u>70</u>
20 < 30	83	<u>111</u>
30 < 40	136	<u>174</u>
40 < 50	263	319
50 < 60	446	<u>506</u>
≥ 60	516	<u>565</u>

 $^{^{166}}$ Calculations are based on TV dimensions at the midpoint of the specified range. For example, a diagonal of 25" was

used to compute values for the range of 20"-30". 15" was used to compute the value for sizes < 20".

167 Based on ENERGY STAR Version 3.0 requirements, from ENERGY STAR Program Requirements for Televisions, Partner Commitments, accessed October 2010,

http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/tv_vcr/FinalV3.0_TV%20Program%20Requ_ irements.pdf
168 lbid.

 $^{^{169}}$ Calculations are based on TV dimensions at the midpoint of the specified range. For example, a diagonal of 25" was used to compute values for the range of 20"-30". 15" was used to compute the value for sizes < 20". 60" was used to compute the value for sizes ≥ 60"

<u>Coincident demand savings are given in the Table 2-77: Deemed coincident demand savings for ENERGY STAR Version 5.3 and ENERGY STAR Most Efficient TVs. Table 2-77.</u>

Table 2-<u>777749</u>: Deemed coincident demand savings for ENERGY STAR Version <u>4.1 and 5.1-3 and ENERGY</u>

<u>STAR Most Efficient TVs.</u>

Diagonal Screen Size (inches) ¹⁷⁰	Coincident Demand Savings ENERGY STAR V. 5.1 (kW)	Coincident Demand Savings ENERGY STAR Most Efficient (kW)
< 20	0.009	0.011
20 < 30	0.013	0.017
30 < 40	0.021	0.027
40 < 50	0.040	0.049
50 < 60	0.068	0.078
≥ 60	0.079	0.087

2.30.42.34.4 Measure Life

Measure life = 15 years¹⁷¹

170 Ibid.

¹⁷¹ Deemed Savings Technical Assumptions, Program: ENERGY STAR Retailer Incentive Pilot Program, accessed October 2010, http://www.xcelenergy.com/SiteCollectionDocuments/docs/ES-Retailer-Incentive-60-day-Tech-Assumptions.pdf

2.312.35 ENERGY STAR Office Equipment

This protocol estimates savings for installing ENERGY STAR office equipment compared to standard efficiency equipment in residential applications. The measurement of energy and demand savings is based on a deemed savings value multiplied by the quantity of the measure.

2.31.12.35.1 Algorithms

The general form of the equation for the ENERGY STAR Office Equipment measure savings' algorithms is:

Number of Units X Savings per Unit

To determine resource savings, the per unit estimates in the algorithms will be multiplied by the number of units. Per unit savings are primarily derived from the June 2010 release of the ENERGY STAR calculator for office equipment.

ENERGY STAR Computer

 $\triangle kWh$ = $ESav_{COM}$

 ΔkW_{peak} = $DSav_{COM} \times CF_{COM}$

ENERGY STAR Fax Machine

 ΔkWh = $ESav_{FAX}$

 ΔkW_{peak} = $DSav_{FAX} \times CF_{FAX}$

ENERGY STAR Copier

 ΔkWh = $ESav_{COP}$

 ΔkW_{peak} = $DSav_{COP} \times CF_{COP}$

ENERGY STAR Printer

 ΔkWh = $ESav_{PRI}$

 ΔkW_{peak} = $DSav_{PRI} \times CF_{PRI}$

ENERGY STAR Multifunction

 ΔkWh = $ESav_{MUL}$

 ΔkW_{peak} = $DSav_{MUL} \times CF_{MUL}$

ENERGY STAR Monitor

 $\triangle kWh$ = $ESav_{MON}$

 ΔkW_{peak} = $DSav_{MON} \times CF_{MON}$

2.31.22.35.2 Definition of Terms

ESav _{com}	= Electricity savings per purchased ENERGY STAR com	puter.

DSav_{COM} = Summer demand savings per purchased ENERGY STAR

computer.

ESav_{FAX} = Electricity savings per purchased ENERGY STAR fax

machine.

DSav_{FAX} = Summer demand savings per purchased ENERGY STAR fax

machine.

 $ESav_{COP}$ = Electricity savings per purchased ENERGY STAR copier.

DSav_{COP} = Summer demand savings per purchased ENERGY STAR

copier.

 $ESav_{PRI}$ = Electricity savings per purchased ENERGY STAR printer.

DSav_{PRI} = Summer demand savings per purchased ENERGY STAR

printer.

ESav_{MUL} = Electricity savings per purchased ENERGY STAR

multifunction machine.

DSav_{MUL} = Summer demand savings per purchased ENERGY STAR

multifunction machine.

 $ESav_{MON}$ = Electricity savings per purchased ENERGY STAR monitor.

 $DSav_{MON}$ = Summer demand savings per purchased ENERGY STAR

monitor.

CF_{COM}, CF_{FAX}, CF_{COP},

 CF_{PRI} , CF_{MUL} , CF_{MON} = Demand Coincidence Factor (See Section 1.4). The

coincidence of average office equipment demand to summer system peak equals 1 for demand impacts for all office equipment reflecting embedded coincidence in the DSav factor.

Table 2-787850: ENERGY STAR Office Equipment - References

Component	Туре	Value	Sources
ESav _{com}	Fixed	see Table 2-51 <u>Table 2-79Table</u>	1
ESav _{FAX}		2-79Table 2-76	
ESav _{COP}			
ESav _{PRI}			
ESav _{MUL}			
ESav _{MON}			
DSav _{COM}	Fixed	see Table 2-51 <u>Table 2-79Table</u>	2
DSav _{FAX}		2-79 Table 2-76	
DSav _{COP}			
DSav _{PRI}			
DSav _{MUL}			
DSav _{MON}			
CF _{COM} ,CF _{FAX} ,CF _{COP} ,CF _{PRI} ,CF _{MU} L,CF _{MON}	Fixed	1.0, 1.0, 1.0, 1.0, 1.0	3

Sources:

ENERGY STAR Office Equipment Savings Calculator (Calculator updated: June 2010).
 Default values were used.

Using a residential office equipment load shape, the percentage of total savings that occur during the top 100 system hours was calculated and multiplied by the energy savings.

Coincidence factors already embedded in summer peak demand reduction estimates.

Table 2-797951: ENERGY STAR Office Equipment Energy and Demand Savings Values

Measure	Energy Savings (ESav)	Demand Savings (DSav)
Computer	77 kWh	0.0100 kW
Fax Machine (laser)	78 kWh	0.0105 kW
Copier (monochrome)		
1-25 images/min	73 kWh	0.0098 kW
26-50 images/min	151 kWh	0.0203 kW
51+ images/min	162 kWh	0.0218 kW
Printer (laser, monochrome)		
1-10 images/min	26 kWh	0.0035 kW
11-20 images/min	73 kWh	0.0098 kW
21-30 images/min	104 kWh	0.0140 kW
31-40 images/min	156 kWh	0.0210 kW
41-50 images/min	133 kWh	0.0179 kW
51+ images/min	329 kWh	0.0443 kW
Multifunction (laser, monochrome)		
1-10 images/min	78 kWh	0.0105 kW
11-20 images/min	147 kWh	0.0198 kW
21-44 images/min	253 kWh	0.0341 kW
45-99 images/min	422 kWh	0.0569 kW
100+ images/min	730 kWh	0.0984 kW
Monitor	14 kWh	0.0019 kW

Sources:

1. ENERGYSTAR office equipment calculators

2.322.36 ENERGY STAR LEDs

This protocol documents the energy and demand savings attributed to replacing standard incandescent lamps and fixtures in residential applications with ENERGY STAR® LED lamps, retrofit kits, and fixtures. LEDs provide an efficient alternative to incandescent lighting. The ENERGY STAR program began labeling qualified LED products in the latter half of 2010.

2.32.12.36.1 Eligibility Requirements

All LED lamps, retrofit kits and fixtures must be:

- ENERGY STAR qualified 172 Criteria for ENERGY STAR qualified LED products vary by product type and include specifications for: light output (lumens), efficacy (lumens per Watt), zonal lumen density, Correlated Color Temperature (CCT), lumen maintenance (lifetime), Color Rendering Index (CRI), and power factor, among others. LED bulbs also have three-year (or longer) warranties covering material repair or replacement from the date of purchase and must turn on instantly (have no warm-up time),
- Lighting Facts labeled¹⁷³ Contains the manufacturer's voluntary pledge that the
 product's performance is accurately represented in the market. Through this DOEsponsored program, the manufacturer discloses the product's light output, efficacy,
 Watts, CCT, and CFI as measured by the IES LM-79-2008 testing procedure.
- Dimmable product has dimming capability that is stated on the product package

2.32.22.36.2 Algorithms

The LED measure savings are based on the algorithms in Section 2.262.30, but include several adjustments. Due to the wide range of efficacy (lumens/watt) for LEDs, and the resulting difficulty in determining equivalent incandescent bulb wattages, the savings algorithms for LED products are grouped by the lumen ranges given in EISA 2007.

GENERAL SERVICE LAMPS

<u>Table 2-80Table 2-80Table 2-78Table 2-52</u> shows lumen ranges and incandescent lamp equivalents for general service LEDs;¹⁷⁴

SECTION 2: Residential Measures

ENERGY STAR LEDs Page 1

 $^{^{172}\} http://www.energystar.gov/ia/partners/product_specs/program_reqs/SSL_Key_Product_Criteria.pdf$

¹⁷³ http://www.lightingfacts.com/

http://www1.eere.energy.gov/buildings/appliance_standards/residential/incandescent_lamps.html

Table 2-808052. General Service Lamps

Minimum Lumens (a)	Maximum Lumens (b)	Incandescent Equivalent Watts _{Base} (Pre-EISA 2007) (c)	Watts _{Base} (Post-EISA 2007) (d)	Post-EISA 2007 Effective Date (e)
1490	2600	100	72	2012 TRM
1050	1489	75	53	2013 TRM
750	1049	60	43	2014 TRM
310	749	40	29	2014 TRM

To determine baseline wattage for an LED general service lamp:

- 1. Identify the LED's rated lumen output
- 2. In <u>Table 2-80Table 2-80Table 2-78Table 2-52</u>, find the lumen range into which the LED falls (see columns (a) and (b))
- Find the baseline wattage in column (c) or column (d). Values in column (c) are used for Watts_{Base} until the TRM listed under column (e). Afterwards, values in column (d) are used for Watts_{Base}.

Note that this TRM section is applicable only to LEDs with rated outputs between 310 and 2600 lumens that replace general service medium screw base lamps such as A-shapes and globes, as well as candelabras. This TRM section is neither applicable to LEDs with rated lumen output lower than 310, nor to LEDs with rated lumen output greater than 2600. (For reflector lamps refer to Table 2-81Table 2-79Table 2-53).

```
Residential LED, 40 Watt incandescent equivalent (rated lumens between 310 and 749)
```

```
Energy Impact (kWh) = ((Watts_{Base}-Watts_{LED}) * (Hours_{LED} * 365) / 1000) * ISR_{LED}
```

Peak Demand Impact (kW) = $((Watts_{Base} - Watts_{LED}) / 1000) * CF * ISR_{LED})$

```
Residential LED, 60 Watt incandescent equivalent (rated lumens between 750 and 1049)
```

Residential LED, 75 Watt incandescent equivalent (rated lumens between 1050 and 1489)

Residential LED, 100 Watt incandescent equivalent (rated lumens between 1490 and 2600)

```
Energy Impact (kWh) = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) * (Hours<sub>LED</sub> * 365) / 1000) * ISR<sub>LED</sub>
```

Peak Demand Impact (kW) = ((Watts_{Base} -Watts_{LED}) / 1000) * CF * ISR_{LED}

ENERGY STAR LEDs Page

REFLECTOR LAMPS

Incandescent reflector lamps (IRLs) are the common cone-shaped light bulbs most typically used in track lighting and "recessed can" light fixtures (low-cost light fixtures that mount flush with the ceiling such that the socket and bulb are recessed into the ceiling). The cone is lined with a reflective coating to direct the light. PAR lamps are the most common type of IRLs; other common IRLs include "blown" PAR (BPAR) lamps, which are designed to be a low cost substitute for widely used PAR lamps, and "bulged" reflector (BR) lamps. 175 Table 2-81 Table 2-81 Table 2-79Table 2-53 shows lumen ranges and incandescent equivalents for LED reflector lamps based on the EISA 2007 amendment for reflector lamps in residential settings. 176

Incandescent Equivalent **Minimum Lumens Maximum Lumens** WattsRase (a) (b) (c) 2340 3075 150 1682 2339 120 1204 1681 100 838 1203 75 561 837 60 420 560 45

Table 2-818153: Reflector Lamps

To determine baseline wattage for an LED reflector lamp:

- 1. Identify the LED's rated lumen output
- 2. In Table 2-81Table 2-81Table 2-79Table 2-53, find the lumen range into which the LED falls (see columns (a) and (b))
- 3. Find the incandescent equivalent wattage in column (c).

Note that this TRM section is applicable only to LEDs with rated outputs between 420 and 3,075 lumen that replace incandescent reflector lamps (floods, recessed lights); it is not applicable to LEDs with rated lumen output lower than 420 nor to LEDs with rated lumen output greater than 3,075.

http://www1.eere.energy.gov/buildings/appliance_standards/residential/incandescent_lamps_standards_final_rule.html

ENERGY STAR LEDs

http://www.standardsasap.org/products/incd_reflector.html

¹⁷⁶ The amendment provided nominal lamp wattages and minimum average efficacies for standard incandescent reflector lamps and general service lamps, <u>Table 2-81Table 2-81Table 2-53</u> adapts those averages. See:

```
Residential LED, 45 Watt incandescent reflector equivalent (rated lumens between 420 and 560)
                                         = ((Watts<sub>Base</sub>-Watts<sub>LED</sub>) * (Hours<sub>LED</sub> * 365) / 1000) * ISR<sub>LED</sub>
Energy Impact (kWh)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) / 1000) * CF * ISR<sub>LED</sub>
Peak Demand Impact (kW)
Residential LED, 60 Watt incandescent reflector equivalent (rated lumens between 561 and 837)
                                        = ((Watts<sub>Base</sub>-Watts<sub>LED</sub>) * (Hours<sub>LED</sub> * 365) / 1000) * ISR<sub>LED</sub>
Energy Impact (kWh)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) / 1000) * CF * ISR<sub>LED</sub>
Peak Demand Impact (kW)
Residential LED, 75 Watt incandescent reflector equivalent (rated lumens between 838 and 1203)
Energy Impact (kWh)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) * (Hours<sub>LED</sub> * 365) / 1000) * ISR<sub>LED</sub>
Peak Demand Impact (kW)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) / 1000) * CF * ISR<sub>LED</sub>
Residential LED, 100 Watt incandescent reflector equivalent (rated lumens between 1204 and 1681)
Energy Impact (kWh)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) * (Hours<sub>LED</sub> * 365) / 1000) * ISR<sub>LED</sub>
Peak Demand Impact (kW)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) / 1000) * CF * ISR<sub>LED</sub>
Residential LED, 120 Watt incandescent reflector equivalent (rated lumens between 1682 and 2339)
Energy Impact (kWh)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) * (Hours<sub>LED</sub> * 365) / 1000) * ISR<sub>LED</sub>
Peak Demand Impact (kW) = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) / 1000) * CF * ISR<sub>LED</sub>
Residential LED, 150 Watt incandescent reflector equivalent (rated lumens between 2340 and 3075)
Energy Impact (kWh)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) * (Hours<sub>LED</sub> * 365) / 1000) * ISR<sub>LED</sub>
Peak Demand Impact (kW)
                                        = ((Watts<sub>Base</sub> -Watts<sub>LED</sub>) / 1000) * CF * ISR<sub>LED</sub>
2.32.32.36.3 Definition of Terms
          WattsLED
                                        = Manufacturer-claimed wattage shown on product packaging
          Hours<sub>LED</sub>
                                        = Average hours of use per day per LED
                                        = Residential LED in-service rate—the percentage of units
          ISR<sub>LED</sub>
                                        rebated that actually get installed
          CF
                                        = Demand Coincidence Factor (See Section 1.4)
```

ENERGY STAR LEDs

Table 2-828254: Residential LED Variables

Variable	Туре	Value	Source
Watts _{Base}	Fixed	See <u>Table 2-80Table 2-80Table</u> 2-78Table 2-52 and <u>Table</u> 2-81Table 2-81Table 2-79Table 2-53	Table 2-80Table 2-80Table 2-78Table 2-52 and Table 2-81Table 2-81Table 2-79Table 2-53
Watts _{LED}	Fixed	Variable	Data Gathering
Hours _{LED}	Fixed	<u>2.8</u> 3	1
CF	Fixed	5%	2
ISR _{LED}	Fixed	95% ¹⁷⁷	3

Sources:

- Nexus Market Research, "Residential Lighting Markdown Impact Evaluation", Final Report, January 20, 2009. Table 6-1. Reference Section 2.30: ENERGY STAR Lighting for full citation. US Department of Energy, Energy Star Calculator. Accessed 3-16-2009
- RLW Analytics, "Development of Common Demand Impacts for Energy Efficiency
 Measures/Programs for the ISO Forward Capacity Market (FCM)," prepared for the New
 England State Program Working Group (SPWG), March 25, 2007, p. IV.
- 3. Mid-Atlantic TRM, version 2.0. Prepared by Vermont Energy Investment Corporation. Facilitated and managed by the Northeast Energy Efficiency Partnerships. July 2011.

2.32.42.36.4 Measure Life

Residential LED Measure Life is 4314.7 yrs¹⁷⁸.

SECTION 2: Residential Measures

ENERGY STAR LEDs Page 1

¹⁷⁷ Subject to verification through evaluation. The value can be updated if evaluation findings reveal a value that differs from the default

¹⁷⁸All LED bulbs listed on the qualified ENERGY STAR product list have a lifetime of at least 15,000 hours. Assuming 3-2.8 hours per day usage, this equates to 4314.7 years.

2.332.37 Residential Occupancy Sensors

This protocol is for the installation of occupancy sensors inside residential homes or common areas.

2.33.12.37.1 Algorithms

 ΔkWh = $kW_{controlled} \times 365 \times (RH_{old} - RH_{new})$

 ΔkW_{peak} = 0

2.33.22.37.2 Definition of Terms

 $kW_{controlled}$ = Wattage of the fixture being controlled by the occupancy

sensor (in kilowatts)

365 = Days per year

RH_{old} = Daily run hours before installation

 RH_{new} = Daily run hours after installation

Table 2-838355: Residential Occupancy Sensors Calculations Assumptions

Component	Туре	Value	Source
kW _{controlled}	Variable	EDC's Data Gathering	AEPS Application; EDC's Data Gathering
RH _{old}	Fixed	<u>2.8</u> 3.0	1
RH _{new}	Fixed	2.1 (70% of RH _{old})	2

Sources:

- Nexus Market Research, "Residential Lighting Markdown Impact Evaluation", Final Report, January 20, 2009. Table 6-1. Reference Section 2.30: ENERGY STAR Lighting for full citation. US Department of Energy, Energy Star Calculator. Accessed 3-16-2009.
- Lighting control savings fractions consistent with current programs offered by National Grid, Northeast Utilities, Long Island Power Authority, NYSERDA, and Energy Efficient Vermont

2.33.32.37.3 Measure Life

The expected measure life is 10 years 179.

¹⁷⁹ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group.

2.342.38 Holiday Lights

Measure Name	Holiday Lights
Target Sector	Residential Applications
Measure Unit	One 25-bulb Strand of Holiday lights
Unit Energy Savings	10.6 kWh
Unit Peak Demand Reduction	0 kW
Measure Life	10 years

Light Emitting Diode (LED) holiday lights are a relatively new application for this existing technology. LED holiday lights reduce energy consumption up to 90%. Up to 25 strands can be connected end-to-end in terms of residential grade lights. Commercial grade lights require different power adapters and as a result, more strands can be connected end-to-end.

2.34.12.38.1 Eligibility

This protocol documents the energy savings attributed to the installation of LED holiday lights indoors and outdoors. LED lights must replace traditional incandescent holiday lights. Algorithms

 $\Delta kWh_{C9} = [(INC_{C9} - LED_{C9})) X \#BULBS X \#STRANDS X HR] / 1000$ $\Delta kWh_{C7} = [(INC_{C7} - LED_{C7}) X \#BULBS X \#STRANDS X HR] / 1000$ $\Delta kWh_{mini} = [(INC_{mini} - LED_{mini}) X \#BULBS X \#STRANDS X HR] / 1000$

Key assumptions

- All estimated values reflect the use of residential (25ct.). per strand).) bulb LED holiday lighting.
- · Secondary impacts for heating and cooling were not evaluated.
- It is assumed that 50% of rebated lamps are of the "mini" variety, 25% are of the "C7" variety, and 25% are of the "C9" variety1. If the lamp type is known or fixed by program design, then the savings can be calculated as described by the algorithms.follows. Otherwise, the savings for the "mini", "C7", and "C9" varieties should be weighted by 0.5, 0.25 and 0.25 respectively.

2.34.22.38.2 Definition of Terms

 LED_{mini} = Wattage of LED mini bulbs

INC_{mini} = Wattage of incandescent mini bulbs

 LED_{C7} = Wattage of LED C7 bulbs

 INC_{C7} = Wattage of incandescent C7bulbs

 LED_{C9} = Wattage of LED C9 bulbs

INC_{C9} = Wattage of incandescent C9 bulbs

SECTION 2: Residential Measures

Holiday Lights Page 170

= Number of bulbs per strand #Bulbs

#Strands = Number of strands of lights per package

Hr = Annual hours of operation

Table 2-848456: Holiday Lights Assumptions

Parameter	Туре	Value	Source
LED _{mini}	Fixed	0.08 W	1
INC _{mini}	Fixed	0.48 W	1
LED _{C7}	Fixed	0.48 W	1
INC _{C7}	Fixed	6.0 W	1
LED _{C9}	Fixed	2.0 W	1
INC _{C9}	Fixed	7.0 W	1
W _{Mini}	Fixed	0.5	1
W _{C7}	Fixed	0.25	1
W _{C9}	Fixed	0.25	1
# _{Bulbs}	Variable	Variable	EDC Data Gathering
# _{Strands}	Variable	Variable	EDC Data Gathering
Hr	Fixed	150	1

Sources:

- 1. The DSMore Michigan Database of Energy Efficiency Measures: Based on spreadsheet calculations using collected data
- 2. http://www.energyideas.org/documents/factsheets/HolidayLighting.pdf

2.34.32.38.3 Deemed Savings

The deemed savings for installation of LED C9, C7, and mini lights is 18.7 kWh, 20.7 kWh, and 1.5 kWh, respectively. The weighted average savings are 10.6 kWh per strand. There are no demand savings as holiday lights only operate at night. Since the lights do not operate in the summer, the coincidence factor for this measure is 0.0.

2.34.42.38.4 Measure Life

Measure life is 10 years 180,181.

SECTION 2: Residential Measures

Holiday Lights

¹⁸⁰The DSMore Michigan Database of Energy Efficiency Measures: Based on spreadsheet calculations using collected data: Franklin Energy Services; "FES-L19 – LED Holiday Lighting Calc Sheet" http://www.energyideas.org/documents/factsheets/HolidayLighting.pdf

2.34.52.38.5 Evaluation Protocol

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings. As these lights are used on a seasonal basis, verification must occur in the winter holiday season. Given the relatively small amount of impact evaluation risk that this measure represents, and given that the savings hinge as heavily on the actual wattage of the supplanted lights than the usage of the efficient LED lights, customer interviews should be considered as an appropriate channel for verification.

Holiday Lights Page 1

2.352.39 Low Income Lighting (FirstEnergy)

Measure Name	Low Income Lighting (FirstEnergy)
Target Sector	Residential Low-Income Establishments
Measure Unit	CFL
Unit Energy Savings	Varies
Unit Peak Demand Reduction	Varies
Measure Life	12.8 years

This protocol documents the calculation methodology and the assumptions regarding certain CFLs that are installed directly by contractors as part of the "Warm Extra Measures" program administered in the FirstEnergy territories. These CFLs are specifically installed in locations that are reportedly in use 1 to 2 hours per day.

The Warm Extra Measures program is offered by the Metropolitan Edison, Pennsylvania Electric, and Pennsylvania Power Companies. Warm Extra Measures is a direct install program that layers on top of the existing Warm and Warm Plus programs.

2.35.12.39.1 Eligibility

This protocol concerns the CFLs that are installed only under the WARM Extra Measures program, which are defined as CFLs in fixture that are used between one and two hours per day according to homeowners/tenants. This additional protocol is necessary because the PA TRM assumes three hours of usage per day for most residential lighting applications, while the CFLs in the WARM Extra Measures program are installed expressly in fixtures that are reported to have one to two hours of usage per day.

2.35.22.39.2 Algorithms

 $\triangle kWh$ = $(Base_{watts} - CFL_{watts}) X CFL_{hours} X 365 / 1000 X ISR_{CFL}$

 $\Delta kW = (Base_{watts} - CFL_{watts}) / 1000 X CF X ISR_{CFL}$

2.35.32.39.3 Definition of Terms

Base_{watts} = Wattage of baseline bulb

 CFL_{watts} = Wattage of CFL

 CFL_{hours} = Daily hours of operation for CFL

365 = Days per year

ISR_{CFL} = In-service rate – percent of bulbs installed. Adjustment of this

value can be made based on evaluation findings.

CF = Demand Coincidence Factor (See Section 1.4)

Table 2-858557: Low Income Lighting Calculations Assumptions

Component	Туре	Value	Source
Base _{watts}	Fixed	See <u>Table 2-86Table 2-86Table</u> 2-84Table 2-58	<u>Table 2-86Table 2-86</u> Table 2-84Table 2-58
CFL _{watts}	Fixed	Data Gathering	EDC Data Gathering
CFL _{hours} :	Fixed	1.5	1
CF	Fixed	0.05	2
ISR _{CFL}	Fixed	84%	3, 4

Sources:

- 1. Based on EDC program design and a recent CFL survey.
- RLW Analytics, "Development of Common Demand Impacts for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)", prepared for the New England State Program Working Group (SPWG), March 25, 2007, p. IV.
- 3. Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 42 (Table 4-7). These values reflect both actual installations and the % of units planned to be installed within a year from the logged sample. The logged % is used because the adjusted values (to account for differences between logging and telephone survey samples) were not available for both installs and planned installs. However, this seems appropriate because the % actual installed in the logged sample from this table is essentially identical to the % after adjusting for differences between the logged group and the telephone sample (p. 100, Table 9-3).
- 4. Value subject to update through evaluation.

2.35.42.39.4 Deemed Savings

The deemed savings for the installation of CFL lamps compared to incandescent bulbs are listed in Table 2-86Table 2-86Table 2-86Table 2-84Table 2-86Table 2-

Table 2-868658: Energy Savings and Demand Reductions

CFL _{watts}	Base _{watts} 182	CFL _{hours}	Energy Savings (kWh)	Demand Reduction (kW)
9	40 (29)40	1.5	14.3 (9.2)14.3	0.00155 (0.00100)0.00155
11	40 (29)40	1.5	13.3 (8.3)13.3	0.00145 (0.00090)0.00145
13	60 (43)60	1.5	21.6 (13.8)21.6	0.00235 (0.00150)0.00235
14	60 (43)60	1.5	21.2 (13.3)21.2	0.00230 (0.00145)0.00230
18	<u>53</u> 75	1.5	<u>16.1</u> 26.2	<u>0.00175</u> 0.00285
19	<u>53</u> 75	1.5	<u>15.6</u> 25.8	0.001700.00280
22	<u>53</u> 75	1.5	<u>14.3</u> 24.4	0.001550.00390
23	<u>72</u> 100	1.5	<u>22.5</u> 35.4	0.002450.00385
26	<u>72</u> 100	1.5	<u>21.2</u> 34.0	0.002300.00370

2.35.52.39.5 Measure Life

The assumed measure life for a compact fluorescent light bulb is 7,000 hours or 12.8 years for this measure.

2.35.62.39.6 Evaluation Protocol

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

¹⁸² Value in () are effective as of the 2014 TRM to adjust for EISA 2007. Reference Section 2.302.30 for further information on EISA 2007.

2.362.40 Water Heater Tank Wrap

Measure Name	Water Heater Tank Wrap
Target Sector	Residential
Measure Unit	Tank
Unit Energy Savings	Varies
Unit Peak Demand Reduction	Varies
Measure Life	7 years

This measure applies to the installation of an insulated tank wrap or "blanket" to existing residential electric hot water heaters.

The base case for this measure is a standard residential, tank-style, electric water heater with no external insulation wrap.

2.36.12.40.1 Algorithms

The annual energy savings for this measure are assumed to be dependent upon decreases in the overall heat transfer coefficient that are achieved by increasing the total R-value of the tank insulation.

$$\Delta kWh = \frac{\left(U_{base}A_{base} - U_{insul}A_{insul}\right) \times \left(T_{setpoint} - T_{ambient}\right)}{3412 \times \eta_{Elec}} \times HOU$$

$$\Delta kW_{peak} = \frac{\Delta kWh}{HOU} \times CF$$

2.36.22.40.2 Definition of Terms

U _{base}	= Overall heat transfer coefficient of water heater prior to adding tank wrap (Btu/Hr-F-ft²).
U _{insul}	= Overall heat transfer coefficient of water heater after addition of tank wrap (Btu/Hr-F-ft²).
A _{base}	= Surface area of storage tank prior to adding tank wrap (square feet) ¹⁸³
A _{insul}	= Surface area of storage tank after addition of tank wrap (square feet) ¹⁸⁴ .
η_{Elec}	= Thermal efficiency of electric heater element
T _{setpoint}	= Temperature of hot water in tank (F).

 $^{^{\}mbox{\scriptsize 183}}$ Area includes tank sides and top to account for typical wrap coverage.

¹⁸⁴ Ibid.

 $T_{ambient}$ = Temperature of ambient air (F).

HOU = Annual hours of use for water heater tank.

CF = Demand Coincidence Factor (See Section 1.4)

3412 = Conversion factor (Btu/kWh)

The U.S. Department of Energy recommends adding a water heater wrap of at least R-8 to any water heater with an existing R-value less than R-24¹⁸⁵. The default inputs for the savings algorithms are given in Table 2-87Table 2-87Table 2-87Table 2-85Table 2-59Table 2-59. Actual tank and blanket U-values can be used in the above algorithms as long as make/model numbers of the tank and blanket are recorded and tracked by the EDC.

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
Component	Туре	Value	Source	
R _{base}	Fixed	12	1	
R _{insul}	Fixed	20	2	
η _{Elec}	Fixed	0.97	3	
T _{hot}	Fixed	120	5	
T _{ambient}	Fixed	70	5	
HOU	Fixed	8760	4	
CF	Fixed	1	4	

Table 2-878759: Water Heater Tank Wrap – Default Values

Sources:

- 1. The baseline water heater is assumed to have 1 inch of polyurethane foam as factory insulation and an overall R-12.
- 2. The water heater wrap is assumed to be a fiberglass blanket with R-8, increasing the total to R-20.
- 3. New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs. October 15, 2010. Prepared by New York Advisory Contractor Team.
- 4. It is assumed that the tank wrap will insulate the tank during all hours of the year.
- 5. Program assumption

¹⁸⁵ "Energy Savers", U.S. Department of Energy, accessed November, 2010 http://www.energysavers.gov/your_home/water_heating/index.cfm/mytopic=13070

Table 2-888860: Deemed savings by water heater capacity.

Capacity (gal)	R _{base}	R _{insul}	A _{base} (ft ²) ¹⁸⁶	A _{insul} (ft ²) ¹⁸⁷	ΔkWh	ΔkW
30	8	16	19.16	20.94	143	0.0164
30	10	18	19.16	20.94	100	0.0114
30	12	20	19.16	20.94	73	0.0083
30	8	18	19.16	20.94	163	0.0186
30	10	20	19.16	20.94	115	0.0131
30	12	22	19.16	20.94	85	0.0097
40	8	16	23.18	25.31	174	0.0198
40	10	18	23.18	25.31	120	0.0137
40	12	20	23.18	25.31	88	0.0100
40	8	18	23.18	25.31	197	0.0225
40	10	20	23.18	25.31	139	0.0159
40	12	22	23.18	25.31	103	0.0118
50	8	16	24.99	27.06	190	0.0217
50	10	18	24.99	27.06	131	0.0150
50	12	20	24.99	27.06	97	0.0111
50	8	18	24.99	27.06	214	0.0245
50	10	20	24.99	27.06	152	0.0173
50	12	22	24.99	27.06	113	0.0129
80	8	16	31.84	34.14	244	0.0279
80	10	18	31.84	34.14	171	0.0195
80	12	20	31.84	34.14	125	0.0143
80	8	18	31.84	34.14	276	0.0315
80	10	20	31.84	34.14	195	0.0223
80	12	22	31.84	34.14	145	0.0166

2.36.32.40.3 Measure Life

The measure life is 7 years 188.

Water Heater Tank Wrap

 $^{^{\}rm 186}$ Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.

187 A_{insul} was calculated by assuming that the water heater wrap is a 2" thick fiberglass material.

188 DEER Version 2008.2.05, December 16, 2008.

2.372.41 Pool Pump Load Shifting

Measure Name	Pool Pump Load Shifting
Target Sector	Residential Establishments
Measure Unit	Pool Pump Load Shifting
Unit Energy Savings	Variable
Unit Peak Demand Reduction	Variable
Measure Life	1 year

Residential pool pumps can be scheduled to avoid the noon to 8 PM peak period.

2.37.12.41.1 Eligibility

This protocol documents the energy savings attributed to schedule residential single speed pool pumps to avoid run during the peak hours from noon to 8_PM. The target sector primarily consists of single-family residences. This measure is intended to be implemented by trade allies that participate in in-home audits, or by pool maintenance professionals.

2.37.22.41.2 Algorithms

The residential pool pump reschedule measure is intended to produce demand savings, but if the final daily hours of operation are different than the initial daily hours of operation, an energy savings (or increase) may result. The demand savings result from not running pool pumps during the peak hours during noon to 8PM.

 $\triangle kWh$ = $\triangle hours/day \times Days_{Operating} \times kW_{pump}$

 ΔkW_{peak} = $(CF_{pre} - CF_{post}) \times kW_{pump}$

The peak coincident factor, CF, is defined as the average coincident factor during noon and 8 PM on summer weekdays. Ideally, the demand coincidence factor for the supplanted single-speed pump can be obtained from the pump's time clock. The coincidence factor is equal to the number of hours that the pump was set to run between noon and 8 PM, divided by 8.

2.37.32.41.3 Definition of Terms

 \triangle hours/day = The change in daily operating hours.

 kW_{pump} = Electric demand of single speed pump at a given flow rate.

This quantity should be measured or taken from <u>Table 2-90Table</u>

2-90Table 2-88Table 2-62

 CF_{pre} = Peak coincident factor of single speed pump from noon to 8PM

in summer weekday prior to pump rescheduling. This quantity

should be inferred from the timer settings

in summer weekday after pump rescheduling. This quantity

should be inferred from the new timer settings.

Days_{Operating} = Days per year pump is in operation. This quantity should be

recorded by applicant.

Table 2-898961: Pool Pump Load Shifting Assumptions

Component	Туре	Value	Source
Δhours/day	Fixed	0	2
kW _{pump}	Fixed	See <u>Table 2-90Table 2-90Table</u> 2-88Table 2-62	Table 2-90Table 2-90Table 2-88Table 2-62
CF _{pre}	Fixed	0.235	3
CF _{post}	Fixed	0	2
Days _{Operating}	Fixed	100	1

Sources:

- Mid-Atlantic TRM, version 2.0. Prepared by Vermont Energy Investment Corporation. Facilitated and managed by the Northeast Energy Efficiency Partnerships. July 2011.
- 2. Program is designed to shift load to off-peak hours, not necessarily to reduce load.
- Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE
 Design and Engineering, Table 16. Statewide value calculated using the non-weather
 dependent coincident peak demand calculator with inland valley data.

Average Single Speed Pump Electric Demand

Since this measure involves functional pool pumps, actual measurements of pump demand are encouraged. If this is not possible, then the pool pump power can be inferred from the nameplate horsepower. Table 2-90Table 2-90Table 2-88Table 2-62 shows the average service factor (oversizing factor), motor efficiency, and electrical power demand per pump size based on California Energy Commission (CEC) appliance database for single speed pool pump¹⁸⁹. Note that the power to horsepower ratios appear high because many pumps, in particular those under 2 HP, have high 'service factors'. The true motor capacity is the product of the nameplate horsepower and the service factor.

^{189 &}quot;CEC Appliances Database – Pool Pumps." California Energy Commission. Updated Feb 2008. Accessed March 2008. http://www.energy.ca.gov/appliances/database/historical_excel_files/2009-03-01_excel_based_files/Pool_Products/Pool_Pumps.zip

Technical Reference Manual

Pump Horse Power (HP)	Average Pump Service Factor*	Average Pump Motor Efficiency*	Average Pump Power (W)*
0.50	1.62	0.66	946
0.75	1.29	0.65	1,081
1.00	1.28	0.70	1,306
1.50	1.19	0.75	1,512
2.00	1.20	0.78	2,040
2.50	1.11	0.77	2,182
3.00	1.21	0.79	2,666

2.37.42.41.4 Measure Life

The measure life is initially assumed to be one year. If there is significant uptake of this measure then a retention study may be warranted.

2.37.52.41.5 Evaluation Protocol

The most appropriate evaluation protocol for this measure is verification of pool pump run time.

¹⁹⁰ Averaged for all listed single-speed pumps in the last available version of the CEC appliance efficiency database. The powers are for 'CEC Curve A' which represents hydraulic properties of 2" PVC pipes rather than older, 1.5" copper pipes.

2.382.42 High Efficiency Two-Speed Pool Pump

The following protocol for the measurement of energy and demand savings applies to the installation of efficient two-speed residential pool pump motors in place of a standard single speed motor of equivalent horsepower for residents with swimming pools. Pool pumps and motors are one of a home's highest energy consuming technologies.

2.38.12.42.1 Eligibility

High efficiency motors (capacitor start, capacitor run) and high efficiency pumps should be required. Qualifying two speed systems must be able to reduce flow rate by 50% and provide temporary override to full flow for startup and cleaning. All systems should be encouraged to perform filtering and cleaning during off peak hours.

2.38.22.42.2 Algorithms

 $\triangle kWh$ = $kWh_{base} - kWh_{two speed}$

 ΔkW_{peak} = $(kW_{base} - kW_{two speed}) \times CF$

2.38.32.42.3 Definition of Terms

 kWh_{base} = Assumed annual kWh consumption for a standard single

speed pump motor in a cool climate (assumes 100 day pool

season)

 $kWh_{two \, speed}$ = Assumed annual $kWh \, consumption \, for \, two \, speed \, pump \, motor$

in a cool climate

 kW_{base} = Assumed connected load of a standard two speed pump motor

RHRS = Annual run hours of the baseline and efficient motor

CF = Demand Coincidence Factor (See Section 1.4)

Table 2-919163: High Efficiency Pool and Motor – Two Speed Pump Calculations Assumptions

Component	Туре	Value	Source
kWh _{Base}	Fixed	707 kWh	1
kWh _{Two Speed}	Fixed	177 kWh	1
kW _{Base}	Fixed	1.364 kW	1
kW _{Two Speed}	Fixed	0.171 kW	1
RHRS _{Base}	Fixed	518	1 and 2
RHRS _{Two Speed}	Fixed	1,036	1 and 2
CF	Fixed	0.235%	3

Sources:

- 1. Mid-Atlantic TRM, version 2.0. Prepared by Vermont Energy Investment Corporation. Facilitated and managed by the Northeast Energy Efficiency Partnerships. July 2011.
- 2. Assumes 100 day pool season and 5.18 hours per day for the base condition and an identically sized two speed pump operating at 50% speed for 10.36 hours per day.
- 3. Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE Design and Engineering, Table 16. Statewide value calculated using the non-weather dependent coincident peak demand calculator with inland valley data.

Table 2-929264: Two-Speed Pool Pump Deemed Savings Values

Average Annual kWh Savings per Unit	Average Summer Coincident Peak kW Savings per unit
530 kWh	0.280 kW

2.38.42.42.4 Measure Life

The estimated useful life for a variable speed pool pump is 10 years. 191

¹⁹¹ Mid-Atlantic TRM, version 2.0. Prepared by Vermont Energy Investment Corporation. Facilitated and managed by the Northeast Energy Efficiency Partnerships. July 2011

2.392.43 Variable Speed Pool Pumps (with Load Shifting Option)

Measure Name	Residential VFD Pool Pumps
Target Sector	Residential Establishments
Measure Unit	VFD Pool Pumps
Unit Energy Savings	Variable
Unit Peak Demand Reduction	Variable
Measure Life	10 years

This measure has two potential components. First, a variable speed pool pump must be purchased and installed on a residential pool. Second, the variable speed pool pump may be commissioned such that it does not operate in the noon to 8 PM period (on weekdays). This second, optional step is referred to as *load shifting*. Residential variable frequency drive pool pumps can be adjusted so that the minimal required flow is achieved for each application. Reducing the flow rate results in significant energy savings because pump power and pump energy usage scale with the cubic and quadratic powers of the flow rate respectively. Additional savings are achieved because the VSD pool pumps typically employ premium efficiency motors. Since the only difference between the VSD pool pump without load shifting and VSD pool pump with load shifting measures pertains to the pool pump operation schedule, this protocol is written in such that it may support both measures at once.

2.39.12.43.1 Eligibility

To qualify for the load shifting rebate, the pumps are required to be off during the hours of noon to 8 PM. This practice results in additional demand reductions.

2.39.22.43.2 Algorithms

This protocol documents the energy savings attributed to variable frequency drive pool pumps in various pool sizes. The target sector primarily consists of single-family residences.

 ΔkWh = kWh_{base} - kWh_{VFD}

 kWh_{base} = $(h_{SS} X kW_{SS}) X Days/year$

 kWh_{VFD} = $(h_{VFD}XkW_{VFD})XDays/year$

The demand reductions are obtained through the following formula:

 ΔkW_{peak} = $kW_{base} - kW_{VFD}$ kW_{base} = $(CF_{SS} \times kW_{SS})$ kW_{VFD} = $(CF_{VFD} \times kW_{VFD})$

The peak coincident factor, CF, is defined as the average coincident factor during noon and 8 PM on summer weekdays. Ideally, the demand coincidence factor for the supplanted single-speed pump can be obtained from the pump's time clock. The coincidence factor is equal to the number

SECTION 2: Residential Measures

of hours that the pump was set to run between noon and 8 PM, divided by 8. If this information is not available, the recommended daily hours of operation to use are 5.18 and the demand coincidence factor is 0.27. These operation parameters are derived from the 2011 Mid Atlantic TRM.

2.39.32.43.3 Definition of Terms

The parameters in the above equation are listed below.

H _{SS}	= Hours of operation per day for Single Speed Pump. This quantity should be recorded by the applicant.
H_{VFD}	= Hours of operation per day for Variable Frequency Drive Pump. This quantity should be recorded by the applicant.
Days/yr	= Pool pump days of operation per year.
W _{SS}	= Electric demand of single speed pump at a given flow rate. This quantity should be recorded by the applicant or looked up through the horsepower in Table 1-1.
$W_{ m VFD}$	= Electric demand of variable frequency drive pump at a given flow rate. This quantity should be measured and recorded by the applicant.
CF _{SS}	= Peak coincident factor of single speed pump from noon to 8 PM in summer weekday. This quantity can be deduced from the pool pump timer settings for the old pump.
CF _{VFD}	= Peak coincident factor of VFD pump from noon to 8 PM in summer weekday. This quantity should be inferred from the new timer settings.

Table 2-939365: Residential VFD Pool Pumps Calculations Assumptions

Component	Туре	Values	Source
H _{SS}	Variable	Default: 5.18	2
H _{VFD}	Variable	Default: 13.00	2
Days/yr	Fixed	Default: 100	2
Wss	Variable	EDC Data Gathering Default: See <u>Table 2-94Table</u> <u>2-94Table 2-92Table 2-66</u>	1 and <u>Table 2-94Table</u> 2-94Table 2-92Table 2-66
W _{VFD}	Variable	EDC Data Gathering	EDC Data Gathering
CF _{SS}	Variable	Default: 0.235	3
CF _{VFD}	Fixed	0	Program Design

Sources:

- "CEC Appliances Database Pool Pumps." California Energy Commission. Updated Feb 2008. Accessed March 2008. _ http://www.energy.ca.gov/appliances/database/historical_excel_files/2009-03-01_excel_based_files/Pool_Products/Pool_Pumps.zip
- Mid-Atlantic TRM, version 2.0. Prepared by Vermont Energy Investment Corporation. Facilitated and managed by the Northeast Energy Efficiency Partnerships. July 2011.
- Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE
 Design and Engineering, Table 16. Statewide value calculated using the non-weather
 dependent coincident peak demand calculator with inland valley data.

Average Single Speed Pump Electric Demand

Since this measure involves functional pool pumps, actual measurements of pump demand are encouraged. If this is not possible, then the pool pump power can be inferred from the nameplate horsepower. Table 2-94Table 2-94Table 2-92Table 2-66 shows the average service factor (oversizing factor), motor efficiency, and electrical power demand per pump size based on California Energy Commission (CEC) appliance database for single speed pool pump 192. Note that the power to horsepower ratios appear high because many pumps, in particular those under 2 HP, have high 'service factors'. The true motor capacity is the product of the nameplate horsepower and the service factor.

Pump Horse Power (HP)	Average Pump Service Factor	Average Pump Motor Efficiency	Average Pump Power (W)
0.50	1.62	0.66	946
0.75	1.29	0.65	1,081
1.00	1.28	0.70	1,306
1.50	1.19	0.75	1,512
2.00	1.20	0.78	2,040
2.50	1.11	0.77	2,182
3.00	1.21	0.79	2,666

Table 2-949466: Single Speed Pool Pump Specification193

Electric Demand and Pump Flow Rate

The electric demand on a pump is related to pump flow rate, pool hydraulic properties, and the pump motor efficiency. For VFD pumps that have premium efficiency (92%) motors, a regression

^{192 &}quot;CEC Appliances Database – Pool Pumps." California Energy Commission. Updated Feb 2008. Accessed March 2008. http://www.energy.ca.gov/appliances/database/historical excel files/2009-03-01 excel based files/Pool Products/Pool Pumps.zip>

¹⁹³ Averaged for all listed single-speed pumps in the last available version of the CEC appliance efficiency database. The powers are for 'CEC Curve A' which represents hydraulic properties of 2" PVC pipes rather than older, 1.5" copper pipes.

is used to relate electric demand and pump flow rates using the data from Southern California Edison's Innovative Designs for Energy Efficiency (InDEE) Program. This regression reflects the hydraulic properties of pools that are retrofitted with VSD pool pumps. The regression is:

Demand (W) = $0.0978f^2 + 10.989f + 10.281$

Where f is the pump flow rate in gallons per minute.

This regression can be used if the flow rate is known but the wattage is unknown. However, most VFD pool pumps can display instantaneous flow and power. Power measurements or readings in the final flow configuration are encouraged.

2.39.42.43.4 Deemed Savings

The energy savings and demand reductions are prescriptive according to the above formulae. All other factors held constant, the sole difference between quantifying demand reductions for the *VSD Pool Pump* and the *VSD Pool Pump with Load Shifting* measures resides in the value of the parameter **CF**_{VFD}.

2.39.52.43.5 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources¹⁹⁴, a variable speed drive's lifespan is 10 years.

2.39.62.43.6 Evaluation Protocol

The most appropriate evaluation protocol for this measure is verification of installation coupled with survey on run time and speed settings.

¹⁹⁴ DEER values, updated October 10, 2008 http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

Technical Reference Manual

This Page Intentionally Left Blank

3 COMMERCIAL AND INDUSTRIAL MEASURES

The following section of the TRM contains savings protocols for commercial and industrial measures.

3.1 Baselines and Code Changes

All baselines are designed to reflect current market practices which are generally the higher of code or available equipment, that are updated periodically to reflect upgrades in code or information from evaluation results.

Pennsylvania has adopted the 2009 International Energy Conservation Code (IECC) per 34 Pa. Code Section 403.21, effective 12/31/09 by reference to the International Building code and the ICC electrical code. Per Section 501.1 of IECC 2009, "[t]he requirements contained in [chapter 5 of IECC 2009] are applicable to commercial buildings, or portions of commercial buildings. These commercial buildings shall meet either the requirements of ANSI/ASHRAE/IESNA Standard 90.1, Energy Stadnard for Buildings Except for Low-Rise Residential Buildings, or the requirements contain in [chapter 5 of IECC 2009]". As noted in Section 501.2, as an alternative to complying with Sections 502, 503, 504, and 505 of IECC 2009, commercial building projects "shall comply with the requirements of ANSI/ASHRAE/IESNA 90.1 in its entirety."

In accordance with IECC 2009, commercial protocols relying on code standards as the baseline condition may refer to either IECC 2009 or ASHRAE 90.1-2007 per the program design.

3.2 Lighting Equipment Improvements

3.2.1 Eligibility

Eligible lighting equipment and fixture/lamp types include fluorescent fixtures (lamps and ballasts), compact fluorescent lamps, LED exit signs, high intensity discharge (HID) lamps, interior and exterior LED lamps and fixtures, cold-cathode fluorescent lamps (CCFL), induction lamps, and lighting controls. The calculation of energy savings is based on algorithms through the stipulation of key variables (i.e. Coincidence Factor, Interactive Factor and Equivalent Full-Load Hours Hours of Use) and through end-use metering referenced in historical studies or measured, as may be required, at the project level.

For solid state lighting products, please see Section 05.5 for specific eligibility requirements.

3.2.2 Algorithms

For all lighting efficiency improvements, with and without control improvements, the following algorithms apply:

 ΔkW = $kW_{base} - kW_{ee}$

 ΔkW_{peak} = $\Delta kW X CF X (1+IF demand)$

 ΔkWh = $kWh_{base} - kWh_{ee}$

 kWh_{base} = $kW_{base} X(1+IF energy) X HOU$

 kWh_{ee} = $kW_{ee} X(1+IF energy) X HOU X (1 - SVG)$

For new construction and facility renovation projects, savings are calculated as described in Section 3.2.7, New Construction and Building Additions.

For retrofit projects, select the appropriate method from Section 3.2.7, Prescriptive Lighting Improvements.

3.2.3 Definition of Terms

 $\triangle kW$ = Change in connected load from baseline (pre-retrofit) to

installed (post-retrofit) lighting level.

 kW_{base} = kW of baseline lighting as defined by project classification.

 kW_{ee} = kW of post-retrofit or energy-efficient lighting system as

defined in Section 3.2.5.

CF = Demand Coincidence Factor (See Section 1.4)

HOU = Hours of Use – the average annual operating hours of the

baseline lighting equipment, which if applied to full connected

load will yield annual energy use.

IF demand	= Interactive HVAC Demand Factor – applies to C&I interior lighting in space that has air conditioning or refrigeration only. This represents the secondary demand savings in cooling required which results from decreased indoor lighting wattage.
IF energy	= Interactive HVAC Energy Factor – applies to C&I interior lighting in space that has air conditioning or refrigeration only. This represents the secondary energy savings in cooling required which results from decreased indoor lighting wattage.
SVG	= The percent of time that lights are off due to lighting controls relative to the baseline controls system (typically manual switch).

3.2.4 Baseline Assumptions

The following are acceptable methods for determining baseline conditions when verification by direct inspection is not possible as may occur in a rebate program where customers submit an application and equipment receipts only after installing efficient lighting equipment, or for a retroactive project as allowed by Act 129. In order of preference:

- Examination of replaced lighting equipment that is still on site waiting to be recycled or otherwise disposed of.
- Examination of replacement lamp and ballast inventories where the customer has replacement equipment for the retrofitted fixtures in stock. The inventory must be under the control of the customer or customer's agent.
- Interviews with and written statements from customers, facility managers, building
 engineers or others with firsthand knowledge about purchasing and operating practices at
 the affected site(s) identifying the lamp and ballast configuration(s) of the baseline
 condition.
- Interviews with and written statements from the project's lighting contractor or the customer's project coordinator identifying the lamp and ballast configuration(s) of the baseline equipment

3.2.5 Detailed Inventory Form

For lighting improvement projects, savings are generally proportional to the number of fixtures installed or replaced. The method of savings verification will vary depending on the size of the project because fixtures can be hand-counted to a reasonable degree to a limit.

Projects with connected load savings less than 20 kW

For projects having less than 20kW in connected load savings, a detailed inventory is not required but information sufficient to validate savings according to the algorithm in Section 3.2.2 must be included in the documentation. This includes identification of baseline equipment utilized for quantifying kW base. Appendix C contains a prescriptive lighting table, which can estimate savings for small, simple projects under 20kW in savings provided that the user self-certifies the baseline condition, and information on pre-installation conditions include, at a minimum, lamp type, lamp wattage, ballast type and fixture configuration (2 lamp, 4 lamp, etc.).

Projects with connected load savings of 20 kW or higher

For projects having a connected load savings of 20 kW or higher, a detailed inventory is required. Using the algorithms in Section 3.2.2, Δ kW values will be multiplied by the number of fixtures installed. The total Δ kW savings is derived by summing the total Δ kW for each installed measure.

Within a single project, to the extent there are different control strategies (SVG), hours of use (HOU), coincidence factors (CF) or interactive factors (IF), the Δ kW will be broken out to account for these different factors. This will be accomplished using Appendix C, a Microsoft Excel inventory form that specifies the lamp and ballast configuration using the Standard Wattage Table and SVG, HOU, CF and IF values for each line entry. The inventory will also specify the location and number of fixtures for reference and validation.

Appendix C was developed to automate the calculation of energy and demand impacts for retrofit lighting projects, based on a series of entries by the user defining key characteristics of the retrofit project. The main sheet, "Lighting Form", is a detailed line-by-line inventory incorporating variables required to calculate savings. Each line item represents a specific area with common baseline fixtures, retrofit fixtures, controls strategy, space cooling, and space usage.

Baseline and retrofit fixture wattages are determined by selecting the appropriate fixture code from the "Wattage Table" sheet. The "Fixture Code Locator" sheet can be used to find the appropriate code for a particular lamp-ballast combination¹⁹⁵. Actual wattages of fixtures determined by manufacturer's equipment specification sheets or other independent sources may not be used unless (1) the wattage differs from the Standard Wattage Table referenced wattage by more than 10%¹⁹⁶ or (2) the corresponding fixture code is not listed in the Standard Wattage Table. In these cases, alternate wattages for lamp-ballast combinations can be inputted using the "User Input" sheet of Appendix C. Documentation supporting the alternate wattages must be provided in the form of manufacturer provided specification sheets or other industry accepted sources (e.g. ENERGY STAR listing, Design Lights Consortium listing). It must cite test data performed under standard ANSI procedures. These exceptions will be used as the basis for periodically updating the Standard Wattage Table to better reflect market conditions and more accurately represent savings.

Some lighting contractors may have developed in-house lighting inventory forms that are used to determine preliminary estimates of projects. In order to ensure standardization of all lighting projects, Appendix C must still be used. However, if a third-party lighting inventory form is provided, entries to Appendix C may be condensed into groups sharing common baseline fixtures, retrofit fixtures, space type, building type, and controls. Whereas Appendix C separates fixtures by location to facilitate evaluation and audit activities, third-party forms can serve that specific function if provided.

Appendix C will be updated periodically to include new fixtures and technologies available as may be appropriate. Additional guidance can be found in the "Manual" sheet of Appendix C.

¹⁹⁵ The Locator is intended to assist users locate codes in the Standard Wattage Table. It does not generate new codes or wattages. In a few cases, the fixture code noted in the Standard Wattage Table may not use standard notation. Therefore, these fixtures may not be able to be found using the Locator and a manual search may be necessary to locate the code.

¹⁹⁶ This value was agreed upon by the Technical Working Group convened to discuss updates to the TRM. This value is subject to adjustment based on implementation feedback during PY2-PY3 and PY3PY4.

3.2.6 Quantifying Annual Hours of Operation

Projects with connected load savings less than 20 kW

For projects with connected load savings less than 20 kW, apply stipulated whole building hours shown in Table 3-4. If the project cannot be described by the categories listed in Table 3-4, select the "other" category and determine hours using facility staff interviews, posted schedules, or metered data.

EDC evaluation contractors are permitted to revise HOU values if the perceived difference in hours stated in tables is greater than 10%.

Projects with connected load savings of 20 kW or higher

For projects with connected load savings of 20 kW or higher, fixtures should be separated into "usage groups" that exhibit similar usage patterns. Usage groups should be considered and used at the discretion of the EDCs' implementation and evaluation contractors in place of stipulated whole building hours, but are not required. Use of usage groups may be subject to SWE review. Annual hours of use values should be estimated for each group using Table 3-4, facility staff interviews, posted schedules, or metered data.

Metered data is required for projects with high uncertainty, i.e. where hours are unknown, variable, or difficult to verify. Exact conditions of "high uncertainty" are to be determined by the EDC evaluation contractors to appropriately manage variance. Metering is also required when the connected load savings for a project exceeds 200 kW. Metering completed by the implementation contractor maybe leveraged by the evaluation contractor, subject to a reasonableness review. Sampling methodologies within a site are to be discerned by the EDC evaluation contractor based on the characteristics of the facility in question.

For all projects, annual hours are subject to adjustment by EDC evaluators or SWE.

3.2.7 Calculation Method Descriptions By Project Classification

New Construction and Building Additions

For new construction and building addition projects, savings are calculated using ASHRAE 90.1-2007 to determine the baseline demand (kW_{base}) and the new fixtures' wattages as the post-installation demand (kW_{ee}). Pursuant to ASHRAE 90.1-2007, the interior lighting baseline is calculated using either the Building Area Method¹⁹⁷ as shown in Table 3-1, or the Space-by-Space Method¹⁹⁸ as shown in Table 3-2. For exterior lighting, the baseline is calculated using the Baseline Exterior Lighting Power Densities¹⁹⁹ as shown in Table 3-3. The new fixture wattages are specified in the Lighting Audit and Design Tool shown in Appendix C.

CF and IF values are the same as those shown in Table 3-4 and Table 3-5. HOU shall be determined in accordance with Section 3.2.6.

 $^{^{\}rm 197}$ ASHRAE 90.1-2007, Table 9.5.1 – Building Area Method

 $^{^{\}mathrm{198}}$ ASHRAE 90.1-2007, Table 9.6.1 – Space-by-Space Method

¹⁹⁹ ASHRAE 90.1-2007, Table 9.4.5 – Baseline Exterior Lighting Power Densities

HOU and CF values for dusk-to-dawn lighting is are the same as those shown in Table 3-4 unless shorter hours are required by ASHRAE or the fixtures are demonstrated to operate longer hours (e.g. for signage or shading in a parking garage).

Appendix E, a Microsoft Excel inventory form was developed to automate the calculation of energy and demand impacts for new construction lighting projects, based on a series of entries by the user defining key characteristics of the new construction project. The EDCs' implementation and evaluation contractors are allowed to use this tool as an option to simplify their lighting application forms. Appendix C must be used separately to calculate savings for measures other than lighting fixture installs such as control measures for NC lighting projects.

The calculator contains separate "Lighting Forms" for interior and exterior applications. Each lighting form, contains several tables with detailed line-by-line inventory incorporating variables required to calculate savings. The key variables required to calculate savings include building/space type, building size (gross lighted area), lighting power density (LPD), quantity and type of fixtures installed, hours of use (HOU), coincidence factors (CF) or interactive factors (IF).

The fixture wattages are determined by selecting the appropriate fixture code from the "Wattage Table" sheet. The "Fixture Code Locator" sheet can be used to find the appropriate code for a particular lamp-ballast combination²⁰⁰. Actual wattages of fixtures determined by manufacturer's equipment specification sheets or other independent sources may not be used unless (1) the wattage differs from the Standard Wattage Table referenced wattage by more than 10%²⁰¹ or (2) the corresponding fixture code is not listed in the Standard Wattage Table. In these cases, alternate wattages for lamp-ballast combinations can be inputted using the separate "User Input" sheets for interior and exterior applications. Documentation supporting the alternate wattages must be provided in the form of manufacturer provided specification sheets or other industry accepted sources (e.g. ENERGY STAR listing, Design Lights Consortium listing). It must cite test data performed under standard ANSI procedures. These exceptions will be used as the basis for periodically updating the Standard Wattage Table to better reflect market conditions and more accurately represent savings.

Appendix E will be updated periodically to include new fixtures and technologies available as may be appropriate. Additional guidance can be found in the "Manual" sheet of the Appendix E.

²⁰⁰ The Locator is intended to assist users locate codes in the Standard Wattage Table. It does not generate new codes or wattages. In a few cases, the fixture code noted in the Standard Wattage Table may not use standard notation. Therefore, these fixtures may not be able to be found using the Locator and a manual search may be necessary to locate the code.

²⁰¹ This value was agreed upon by the Technical Working Group convened to discuss updates to the TRM. This value is subject to adjustment based on implementation feedback during PY3 and PY4.

Table 3-1: Lighting Power Densities from ASHRAE 90.1-2007 Building Area Method²⁰²

Building Area Type ²⁰³	LPD (W/ft2)	Building Area Type	LPD (W/ft2)
Automotive facility	0.9	Multifamily	0.7
Convention center	1.2	Museum	1.1
Courthouse	1.2	Office	1.0
Dining: bar lounge/leisure	1.3	Parking garage	0.3
Dining: cafeteria/fast food	1.4	Penitentiary	1.0
Dining: family	1.6	Performing arts theater	1.6
Dormitory	1.0	Police/fire station	1.0
Exercise center	1.0	Post office	1.1
Gymnasium	1.1	Religious building	1.3
Health-care clinic	1.0	Retail	1.5
Hospital	1.2	School/university	1.2
Hotel	1.0	Sports arena	1.1
Library	1.3	Town hall	1.1
Manufacturing facility	1.3	Transportation	1.0
Motel	1.0	Warehouse	0.8
Motion picture theater	1.2	Workshop	1.4

 $^{^{\}rm 202}$ ASHRAE 90.1-2007, "Table 9.5.1 Lighting Power Densities Using the Building Area Method."

²⁰³ In cases where both a common space type and a building specific type are listed, the building specific space type shall apply.

Table 3-2: Lighting Power Densities from ASHRAE 90.1-2007 Space-by-Space Method²⁰⁴

Common Space Type ²⁰⁵	LPD (W/ft2)	Building Specific Space Types	LPD (W/ft2)
Office-Enclosed	1.1	Gymnasium/Exercise Center	
Office-Open Plan	1.1	Playing Area	1.4
Conference/Meeting/Multipurpose	1.3	Exercise Area	0.9
Classroom/Lecture/Training	1.4	Courthouse/Police Station/Penitentiary	
For Penitentiary	1.3	Courtroom	1.9
Lobby	1.3	Confinement Cells	0.9
For Hotel	1.1	Judges Chambers	1.3
For Performing Arts Theater	3.3	Fire Stations	
For Motion Picture Theater	1.1	Fire Station Engine Room	0.8
Audience/Seating Area	0.9	Sleeping Quarters	0.3
For Gymnasium	0.4	Post Office-Sorting Area	1.2
For Exercise Center	0.3	Convention Center-Exhibit Space	1.3
For Convention Center	0.7	Library	
For Penitentiary	0.7	Card File and Cataloging	1.1
For Religious Buildings	1.7	Stacks	1.7
For Sports Arena	0.4	Reading Area	1.2
For Performing Arts Theater	2.6	Hospital	
For Motion Picture Theater	1.2	Emergency	2.7
For Transportation	0.5	Recovery	0.8
Atrium—First Three Floors	0.6	Nurse Station	1.0
Atrium—Each Additional Floor	0.2	Exam/Treatment	1.5
Lounge/Recreation	1.2	Pharmacy	1.2
For Hospital	0.8	Patient Room	0.7
Dining Area	0.9	Operating Room	2.2
For Penitentiary	1.3	Nursery	0.6
For Hotel	1.3	Medical Supply	1.4
For Motel	1.2	Physical Therapy	0.9
For Bar Lounge/Leisure Dining	1.4	Radiology	0.4
For Family Dining	2.1	Laundry—Washing	0.6
Food Preparation	1.2	Automotive—Service/Repair	0.7

²⁰⁴ ASHRAE 90.1-2007, "Table 9.6.1 Lighting Power Densities Using the Space-by-Space Method."
²⁰⁵ In cases where both a common space type and a building specific type are listed, the building specific space type shall

Common Space Type LPD (W Laboratory 1.4 Restrooms 0.9 Dressing/Locker/Fitting Room 0.6 Corridor/Transition 0.5 For Hospital 1.0 For Manufacturing Facility 0.5	Manufacturing Low (<25 ft Floor to Ceiling Height) 1.2 High (>25 ft Floor to Ceiling Height) 1.7 Detailed Manufacturing 2.1 Equipment Room 1.2 Control Room 0.5
Restrooms 0.9 Dressing/Locker/Fitting Room 0.6 Corridor/Transition 0.5 For Hospital 1.0	Low (<25 ft Floor to Ceiling Height) 1.2 High (>25 ft Floor to Ceiling Height) 1.7 Detailed Manufacturing 2.1 Equipment Room 1.2 Control Room 0.5
Dressing/Locker/Fitting Room 0.6 Corridor/Transition 0.5 For Hospital 1.0	High (>25 ft Floor to Ceiling Height) 1.7 Detailed Manufacturing 2.1 Equipment Room 1.2 Control Room 0.5
Corridor/Transition 0.5 For Hospital 1.0	Detailed Manufacturing 2.1 Equipment Room 1.2 Control Room 0.5
For Hospital 1.0	Equipment Room 1.2 Control Room 0.5
·	Control Room 0.5
For Manufacturing Eacility I O F	
<u> </u>	
Stairs—Active 0.6	Hotel/Motel Guest Rooms 1.1
Active Storage 0.8	Dormitory—Living Quarters 1.1
For Hospital 0.9	Museum
Inactive Storage 0.3	General Exhibition 1.0
For Museum 0.8	Restoration 1.7
Electrical/Mechanical 1.5	Bank/Office—Banking Activity Area 1.5
Workshop 1.9	Religious Buildings
Sales Area 1.7	Worship Pulpit, Choir 2.4
	Fellowship Hall 0.9
	Retail [For accent lighting, see 9.3.1.2.1(c)]
	Sales Area 1.7
	Mall Concourse 1.7
	Sports Arena
	Ring Sports Area 2.7
	Court Sports Area 2.3
	Indoor Playing Field Area 1.4
	Warehouse
	Fine Material Storage 1.4
	Medium/Bulky Material Storage 0.9
	Parking Garage—Garage Area 0.2
	Transportation
	Airport—Concourse 0.6
	Air/Train/Bus—Baggage Area 1.0
	Terminal—Ticket Counter 1.5

Table 3-3: Baseline Exterior Lighting Power Densities²⁰⁶

Building Exterior	Space Description	LPD	
Uncovered Parking Area	Parking Lots and Drives	0.15 W/ft ²	
Building Grounds	Walkways less than 10 ft wide	1.0 W/linear foot	
	Walkways 10 ft wide or greater	0.2 W/ft ²	
	Plaza areas		
	Special feature areas		
	Stairways	1.0 W/ft ²	
Building Entrances and Exits	Main entries	30 W/linear foot of door width	
	Other doors	20 W/linear foot of door width	
Canopies and Overhangs	Free standing and attached and overhangs	1.25 W/ft ²	
Outdoor sales	Open areas (including vehicle sales lots)	0.5 W/ft ²	
	Street frontage for vehicle sales lots in addition to "open area" allowance	20 W/linear foot	
Building facades		0.2 W/ft² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length	
Automated teller machines and night depositories		270 W per location plus 90 W per additional ATM per location	
Entrances and gatehouse inspection stations at guarded facilities		1.25 W/ft ² of uncovered area	
Loading areas for law enforcement, fire, ambulance, and other emergency service vehicles		0.5 W/ft ² of uncovered area	
Drive-through windows at fast food restaurants		400 W per drive-through	
Parking near 24-hour retail entrances		800 W per main entry	

²⁰⁶ ASHRAE 90.1-2007 Table 9.4.5

Prescriptive Lighting Improvements include fixture or lamp and ballast replacement in existing commercial and industrial customers' facilities.

Note that the Energy Policy Act of 2005 ("EPACT 2005") and Energy Independence and Security Act ("EISA") 2007 standards introduced new efficacy standards for linear fluorescent bulbs and ballasts, effectively phasing out magnetic ballasts (effective October 1, 2010) and most T-12 bulbs (effective July 14, 2012). This induces a shift in what a participant would have purchased in the absence of the program because T-12 bulbs on magnetic ballasts are no longer viable options and, therefore, adjusts the baseline assumption. For Phase 2, Program Year 1, the baseline for a lighting retrofit project is assumed to be the existing fixtures with the existing lamps and ballast, but this assumptions will be revisited in subsequent TRMs. With this understanding, the new federal standards are not immediately relevant for 2013 TRM²⁰⁷

The baseline is the existing fixtures with the existing lamps and ballast as defined in Appendix C.

Other factors required to calculate savings are shown in Table 3-4 and Table 3-5. Note that if HOU is stated and verified by logging lighting hours of use groupings, actual hours should be applied. The IF factors shown in Table 3-5 are to be used only when the facilities are air conditioned and only for fixtures in conditioned or refrigerated space. The HOU for refrigerated spaces are to be estimated or logged separately. To the extent that operating schedules are known, site-specific coincidence factors may be calculated using the non-weather dependent peak demand calculator in place of the default coincidence factors provided in Table 3-4.

Table 3-4: Lighting HOU and CF by Building Type or Function

Building Type	HOU	<u>CF²⁰⁸</u>	Source
Auto Related	4,056	<u>0.62*</u>	<u>7</u>
<u>Daycare</u>	2,590	<u>0.62*</u>	<u>8</u>
Dusk-to-Dawn / Exterior Lighting	3,833	0.00	2
Education – School	1.632	0.31	1
Education – College/University	2,348	0.76	1
Grocery	4,660	0.87	1
Health/Medical – Clinic	3,213	0.73	1
<u>Hospitals</u>	<u>5.182</u>	0.80	1
Industrial Manufacturing – 1 Shift	<u>2,857</u>	<u>0.57</u>	<u>6</u>
Industrial Manufacturing – 2 Shift	<u>4,730</u>	0.57	<u>6</u>
Industrial Manufacturing – 3 Shift	<u>6,631</u>	0.57	<u>6</u>
Libraries	2,566	0.62*	9

²⁰⁷ The TWG will continue to monitor these standards and protocols and make improvements for future TRM updates. ²⁰⁸ Coincidence Factor values are taken from the 2011 Mid-Atlantic TRM. For the building types where CF values are not available in the Mid-Atlantic TRM, an average of CF values available for all building types in the Mid-Atlantic TRM is reported. Subject to revision based on detailed measurement or additional research in subsequent TRM Updates.

Building Type	HOU	<u>CF²⁰⁸</u>	Source
<u>Lodging – Guest Rooms</u>	914	0.09	1
Lodging – Common Spaces	<u>7,884</u>	0.90	1
Multi-Family (Common Areas) - High- rise & Low-rise	5.950	0.62*	<u>3</u>
Nursing Home	<u>4,160</u>	0.62*	4
<u>Office</u>	<u>2,567</u>	<u>0.61</u>	1
Parking Garages	<u>6,552</u>	0.62*	<u>10</u>
Public Order and Safety	<u>5,366</u>	0.62*	11
Public Assembly (one shift)	<u>2,610</u>	0.62*	4
Public Services (nonfood)	<u>3,425</u>	0.62*	<u>5</u>
Restaurant	<u>3,613</u>	<u>0.65</u>	1
Retail	2,829	0.73	1
Religious Worship/Church	<u>1,810</u>	0.62*	<u>12</u>
Storage Conditioned/Unconditioned	3,420	0.62*	4
Warehouse	<u>2,316</u>	<u>0.54</u>	1
24/7 Facilities or Spaces	8,760	1.00	N/A
Other ²⁰⁹	<u>Varies</u>	<u>Varies</u>	1

^{* 0.62} represents the simple average of all coincidence factors listed in the 2011 Mid-Atlantic TRM

Building Type	HOU	CF ²¹⁰	Source
Auto Related	4,056	0.77*	5
Daycare	2,590	0.77*	6
Dusk-to-Dawn Lighting	4,300	0.00	4
Education - Primary School	1,440	0.57	4
Education - Secondary School	2,305	0.57	4
Education - Community College	3,792	0.64	4
Education - University	3,073	0.64	4
Grocery	5,824	0.94	4
Hospitals	6,588 ²¹¹	0.84	4
Industrial Manufacturing – 1 Shift	2,857	0.77*	4

²⁰⁹ To be used only when no other category is applicable. Hours of operation must be documented by facility staff

interviews, posted schedules, or metered data.

240 Average of CF in NJ Clean Energy Program Protocols and 1.0 for CFs above 65% in NJ Protocol. Compromise basedon PECo proposal to account for potential selection of high use circuits for retrofit. Subject to revision based on detailedmeasurement or additional research in subsequent TRM Updates.

211-Average of NJ Clean Energy from JCP&L data and 2004-2005 DEER update study (December 2005).

Building Type	HOU	CF ²¹⁰	Source
Industrial Manufacturing — 2 Shift	4,730	0.77*	4
Industrial Manufacturing – 3 Shift	6,631	0.77*	4
Medical - Clinic	4,212	0.86	4
Libraries	2,566	0.77*	2
Lodging - Guest Rooms	1,145	0.84	1
Lodging - Common Spaces	8,736 ²¹²	1.00	1
Light Manufacturing (Assy)	2,610	0.77*	5
Manufacturing - Light Industrial	4,290	0.63	1
Nursing Home	5,840	0.77*	5
Office - Large	2,808	0.84	1
Office - Small	2,808	0.84	4
Parking Garages	6,552	0.77*	4
Police and Fire Station – 24 Hour	7,665	0.77*	8
Police and Fire Station - Unmanned	1,953	0.77*	8
Public Order and Safety	5,366	0.77*	7
Religious Worship	1,810	0.77*	3, 4
Restaurant - Sit-Down	4,368	0.88	1
Restaurant - Fast-Food	6,188	0.88	1
Retail – 3-Story Large	4,259	0.89	1
Retail - Single-Story Large	4,368	0.89	1
Retail - Small	4,004	0.89	1
Storage Conditioned	4,290	0.85	1
Storage Unconditioned	4,290	0.85	1
Warehouse	3,900	0.85	4
Warehouse (Refrigerated)	2,602	0.77*	5
24/7 Facilities or Spaces	8,760	1.00	N/A
Other ²¹³	Varies	Varies	4

^{* 0.77} represents the simple average of all existing coincidence factors (16.19 divided by 21).

 $^{^{\}rm 242}$ To be used only for lights illuminated on a continuous basis.

²⁴³ To be used only when no other category is applicable. Hours of operation must be documented by facility staffinterviews, posted schedules, or metered data.

- a. Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010.
- b. California Public Utility Commission. Database for Energy Efficiency Resources, 2008
- Small Commercial Contract Group Direct Impact Evaluation Report prepared by
 Itron for the California Public Utilities Commission Energy Division, February 9,
 2010
- State of Ohio Energy Efficiency Technical Reference Manual, Vermont Energy
 Investment Corporation, August 6, 2010. Exterior lighting 3,833 hours per year assumes
 10.5 hours per day; typical average for photocell control.
- 3. Illinois Energy Efficiency Technical Reference Manual, Vermont Energy Investment
 Corporation, 2012. Multi-family common area value based on Focus on Energy
 Evaluation, ACES Deemed Savings Desk Review, November 2010.
- 4. California Public Utility Commission. Database for Energy Efficiency Resources, 2011
- State of Wisconsin Public Service Commission of Wisconsin Focus on Energy Evaluation Business Programs: Deemed Savings Manual V1.0", KEMA, March, 2010.
- UI and CL&P Program Savings Documentation for 2012 Program Year, United Illuminating Company, September 2011.
- California Public Utility Commission. Database for Energy Efficiency Resources, 2011; available at www.deeresources.com
- 8. Analysis of 3-"Kinder Care" daycare centers serving 150-160 children per day average 9,175 ft2; 4.9 Watts per ft2; load factor 23.1% estimate 2,208 hours per year. Given an operating assumption of five days per week, 12 hours per day (6:00AM to 6:00 PM) closed weekends (260 days); Closed on 6 NERC holidays that fall on weekdays (2002, 2008 and 2013) deduct 144 hours: (260 X 12)-144 = 2,976 hours per year; assumption adopts an average of measured and operational bases or 2,592 hours per year.
- 9. Southern California Edison Company, Design & Engineering Services, Work Paper WPSCNRMI0054, Revision 0, September 17, 2007, Ventura County Partnership Program, Fillmore Public Library (Ventura County); Two 8-Foot T8 Lamp and Electronic Ballast to Four 4-Foot T8 Lamps and Premium Electronic Ballast. Reference: "The Los Angeles County building study was used to determine the lighting operating hours for this work paper. At Case Site #19A (L.A. County Montebello Public Library), the lights were at full-load during work hours and at zero-load during non-work hours. This and the L.A. County Claremont Library (also referenced in the Los Angeles County building study) are small library branches similar to those of this work paper's library (Ventura County's Fillmore Library). As such, the three locations have the same lighting profile. Therefore, the lighting operating hour value of 1,664 hours/year stated above is reasonably accurate." Duquesne Light customer data on 29 libraries (SIC 8231) reflects an average load factor 26.4% equivalent to 2285 hours per year. Connecticut Light and Power and United Illuminating Company (CL&P and UI) program savings documentation for 2008

- Program Year Table 2.0.0 C&I Hours, page 246 Libraries 3,748 hours. An average of the three references is 2,566 hours.
- 10. CL&P and UI 2008 program documentation (referenced above) cites an estimated 4,368 hours, only 68 hours greater than dusk to down operating hours. ESNA RP-20-98; Lighting for Parking Facilities acknowledges "Garages usually require supplemental daytime luminance in above-ground facilities, and full day and night lighting for underground facilities." Emphasis added. The adopted assumption of 6,552 increases the CL&P and UI value by 50% (suggest data logging to document greater hours i.e., 8760 hours per year).
- 11. DOE 2003 Commercial Building Energy Survey (CBECS), Table B1. Summary Table: Total and Means of Floor space, Number of Workers, and Hours of Operation for Non-Mall Buildings, Released: June 2006 - 103 Mean Hours per Week for 71,000 Building Type: "Public Order and Safety" - 32 X 52 weeks = 5,366 hour per year.
- 12. DOE 2003 Commercial Building Energy Survey (CBECS), Table B1. Summary Table: Total and Means of Floor space, Number of Workers, and Hours of Operation for Non-Mall Buildings, Released: June 2006 - 32 Mean Hours per Week for 370,000 Building Type: "Religious Worship" - 32 X 52 weeks = 1,664 hour per year.

- 1. New Jersey's Clean Energy Program Protocols, November 2009
 - California Public Utility Commission. Database for Energy Efficiency Resources, 2005
 - RLW Analytics, Coincident Factor Study, Residential and Commercial & Industrial Lighting Measures, 2007.
 - Quantum Consulting, Inc., for Pacific Gas & Electric Company, Evaluation of Pacific Gas & Electric Company's 1997 Commercial Energy Efficiency Incentives

 Program: Lighting Technologies", March 1, 1999
 - KEMA. New Jersey's Clean Energy Program Energy Impact Evaluation and Protocol-Review. 2009.

Southern California Edison Company, Design & Engineering Services, Work Paper-WPSCNRMI0054, Revision 0, September 17, 2007, Ventura County Partnership Program, Fillmore Public Library (Ventura County); Two 8 Foot T8 Lamp and Electronic Ballast to Four 4-Foot T8 Lamps and Premium Electronic Ballast. Reference: "The Los Angeles County building study was used to determine the lighting operating hours for this work paper. At Case Site #19A (L.A. County Montebello Public Library), the lights were at full load during work hours and at zero-load during non-work hours. This and the L.A. County Claremont Library (also referenced in the Los Angeles County building study) are small library branches similar to those of this work paper's library (Ventura County's Fillmore Library). As such, the three locations have the same-lighting profile. Therefore, the lighting operating hour value of 1,664 hours/year stated above is reasonably accurate." Duquesne Light customer data on 29 libraries (SIC 8231) reflects an average load factor 26.4% equivalent to 2285 hours per year. Connecticut Light and Power and United Illuminating Company (CL&P and UI) program savings documentation for 2008 Program-Year Table 2.0.0 C&I Hours, page 246 - Libraries 3,748 hours. An average of the three-references is 2,566 hours.

DOE 2003 Commercial Building Energy Survey (CBECS), Table B1. Summary Table: Total and-Means of Floor space, Number of Workers, and Hours of Operation for Non-Mall Buildings, Released: June 2006 – 32 Mean Hours per Week for 370,000 Building Type: "Religious Worship" – 32 X 52 weeks = 1,664 hour per year.

CL&P and UI 2008 program documentation (referenced above) cites an estimated 4,368 hours, only 68 hours greater than dusk to down operating hours. ESNA RP-20-98; Lighting for Parking-Facilities acknowledges "Garages usually require supplemental daytime luminance in above-ground facilities, and full day and night lighting for underground facilities." Emphasis added. The adopted assumption of 6,552 increases the CL&P and UI value by 50% (suggest data logging to document greater hours i.e., 8760 hours per year).

2008 DEER Update — Summary of Measure Energy Analysis Revisions, August, 2008; available at www.deeresources.com

Analysis of 3-"Kinder Care" daycare centers serving 150-160 children per day – average 9,175-ft2; 4.9 Watts per ft2; load factor 23.1% estimate 2,208 hours per year. Given an operating-assumption of five days per week, 12 hours per day (6:00AM to 6:00 PM) closed weekends (260-days); Closed on 6 NERC holidays that fall on weekdays (2002, 2008 and 2013) deduct 144-hours: (260 X 12)-144 = 2,976 hours per year; assumption adopts an average of measured and operational bases or 2,592 hours per year.

DOE 2003 Commercial Building Energy Survey (CBECS), Table B1. Summary Table: Total and Means of Floor space, Number of Workers, and Hours of Operation for Non-Mall Buildings, Released: June 2006 - 103 Mean Hours per Week for 71,000 Building Type: "Public Order and Safety" 32 X 52 weeks = 5,366 hour per year.

Police and Fire Station operating hour data taken from the CL&P and UI 2008 program-documentation (referenced above).

Table 3-5: Interactive Factors and Other Lighting Variables

Component	Туре	Value	Source
		Cooled space (68 - <u>60</u> °F – 79 °F) = 0.34	
		Freezer spaces (-20- <u>35</u> °F – 27- <u>20</u> °F) = 0.50	
IF _{demand}	Fixed	Medium-temperature refrigerated spaces (28-20 °F – 40 °F) = 0.29	1
		High-temperature refrigerated spaces (47-40 °F – 60 °F) = 0.18	
		Un-cooled space = 0	
		Cooled space (68 - <u>60</u> °F – 79 °F) = 0.12	
		Freezer spaces (- 20 - <u>35</u> °F – 27 - <u>20</u> °F) = 0.50	
IF _{energy}	Fixed	Medium-temperature refrigerated spaces (28-20 °F – 40 °F) = 0.29	1
		High-temperature refrigerated spaces (47-40 °F – 60 °F) = 0.18	
		Un-cooled space = 0	
kW _{base}	Variable	See Standard Wattage Table in Appendix C	2
kW _{inst}	Variable	See Standard Wattage Table in Appendix C	2

- 1. PA TRM, Efficiency Vermont. Technical Reference User Manual: Measure Savings Algorithms and Cost Assumptions (July 2008).
- 2. NYSERDA Table of Standard Wattages (November 2009)

Lighting Control Adjustments

Lighting controls turn lights on and off automatically, which are activated by time, light, motion, or sound. The measurement of energy savings is based on algorithms with key variables (e.g. coincidence factor, hours of use) provided through existing end-use metering of a sample of facilities or from other utility programs with experience with these measures (i.e., % of annual lighting energy saved by lighting control). These key variables are listed in Table 3-6.

If a lighting improvement consists of solely lighting controls, the lighting fixture baseline is the existing fixtures with the existing lamps and ballasts or, if retrofitted, new fixtures with new lamps and ballasts as defined in Lighting Audit and Design Tool shown in Appendix C. In either case, the kW_{inst} for the purpose of the algorithm is set to kW_{base} .

For new construction scenarios, baseline for lighting controls is defined by either IECC or ASHRAE 90.1, based on the EDC program design. See Section 3.1 for more detail.

Component Type Value Source Variable Lighting Audit and Design Tool in Appendix C kW_{base} kW_{inst} Variable Lighting Audit and Design Tool in Appendix C Occupancy Sensor, Controlled Hi-Low Fluorescent Control and controlled HID = 30%²¹⁴ 2 and 32 Daylight Dimmer System=50%²¹⁵See Table SVG Fixed 3-7: Savings Control Factors Assumptions Table 3-7 Based on metering **EDC Data Gathering** CF Variable By building type and size See Table 3-4 HOU Variable By building type and size See Table 3-4 ΙF Variable By building type and size See Table 3-5

Table 3-6: Lighting Controls Assumptions

Table 3-776: Savings Control Factors Assumptions²¹⁶

²¹⁴-Subject to verification by EDC Evaluation or SWE

²⁴⁵ Subject to verification by EDC Evaluation or SWE

²¹⁶ Subject to verification by EDC Evaluation or SWE

<u>Strategy</u>	<u>Definition</u>	Technology	Savings %
Occupancy	Adjusting light levels according to the presence of	Occupancy Sensors	<u>24%</u>
	occupants	Time Clocks	24%
		Energy Management System	24%
Daylighting	Adjusting light levels automatically in response to the	<u>Photosensors</u>	<u>28%</u>
	presence of natural light	Time Clocks	<u>28%</u>
Personal	Adjusting individual light levels by occupants	<u>Dimmers</u>	<u>31%</u>
<u>Tuning</u>	according to their personal preferences; applies, for example, to private offices, workstation-specific lighting in open-plan offices, and classrooms	Wireless on-off switches	<u>31%</u>
		Bi-level switches	<u>31%</u>
		Computer based controls	<u>31%</u>
		Pre-set scene selection	<u>31%</u>
Institutional	Adjustment of light levels through commissioning and	Dimmable ballasts	<u>36%</u>
Tuning	technology to meet location specific needs or building policies; or provision of switches or controls for areas or groups of occupants; examples of the former include high-end trim dimming (also known as ballast tuning or reduction of ballast factor), task tuning and lumen maintenance	On-off or dimmer switches for non- personal tuning	<u>36%</u>
Multiple Types	Includes combination of any of the types described above. Occupancy and personal tuning, daylighting and occupancy are most common.	Occupancy and personal tuning/ daylighting and occupancy	38%

- 1. NYSERDA Table of Standard Wattages
- Williams, A., Atkinson, B., Garbesi, K., Rubinstein, F., "A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings", Lawrence Berkeley National Laboratory, September 2011.

LED Traffic Signals

Traffic signal lighting improvements use the lighting algorithms with the assumptions set forth below. Projects implementing LED traffic signs and no other lighting measures are not required to fill out Appendix C because the assumptions effectively deem savings.

Table 3-887: Assumptions for LED Traffic Signals

Component	Туре	Value	Source	
ΔkW	Variable	See <u>Table 3-9Table 3-9</u> Table 3-8	PECO	
	Red Round	55%		
	Yellow Round	2%		
05	Round Green	43%	PECO	
CF	Turn Yellow	8%	PECO	
	Turn Green	8%		
	Pedestrian	100%		
HOU	Variable	See <u>Table 3-9Table 3-9</u> Table 3-8	PECO	
IF	Fixed	0		

Table 3-998: LED Traffic Signals²¹⁷

Туре	Wattage	% Burn	нои	kWh	ΔkW using LED	∆kWh using LED
Round Traffic Signals						
Red 8"	69	55%	4,818	332	-	-
Red 8" LED	7	55%	4,818	34	0.062	299
Yellow 8"	69	2%	175	12	-	-
Yellow 8" LED	10	2%	175	2	0.059	10
Green 8"	69	43%	3,767	260	-	-
Green 8" LED	9	43%	3,767	34	0.060	226
Red 12"	150	55%	4,818	723	-	-
Red 12" LED	6	55%	4,818	29	0.144	694
Yellow 12"	150	2%	175	26	-	-
Yellow 12" LED	13	2%	175	2	0.137	24
Green 12"	150	43%	3,767	565	-	-
Green 12" LED	12	43%	3,767	45	0.138	520
Turn Arrows						
Yellow 8"	116	8%	701	81	-	-
Yellow 8" LED	7	8%	701	5	0.109	76
Yellow 12"	116	8%	701	81	-	-
Yellow 12" LED	9	8%	701	6	0.107	75
Green 8"	116	8%	701	81	-	-
Green 8" LED	7	8%	701	5	0.109	76
Green 12"	116	8%	701	81	-	-
Green 12" LED	7	8%	701	5	0.109	76
Pedestrian Signs						
Hand/Man 12"	116	100%	8,760	1,016	-	-
Hand/Man 12" LED	8	100%	8,760	70	0.108	946
Note: Energy Savings (kWh) are Annual & Demand Savings (kW) listed are per lamp.						

 $^{^{\}rm 217}$ Source: PECO Comments on the PA TRM, received March 30, 2009.

Table 3-10109: Reference Specifications for Above Traffic Signal Wattages

Туре	Manufacturer & Model
8" Incandescent traffic signal bulb	General Electric Traffic Signal Model 17325-69A21/TS
12" Incandescent traffic signal bulb	General Electric Traffic Signal Model 35327-150PAR46/TS
Incandescent Arrows & Hand/Man Pedestrian Signs	General Electric Traffic Signal Model 19010-116A21/TS
8" and 12" LED traffic signals	Leotek Models TSL-ES08 and TSL-ES12
8" LED Yellow Arrow	General Electric Model DR4-YTA2-01A
8" LED Green Arrow	General Electric Model DR4-GCA2-01A
12" LED Yellow Arrow	Dialight Model 431-3334-001X
12" LED Green Arrow	Dialight Model 432-2324-001X
LED Hand/Man Pedestrian Sign	Dialight Model 430-6450-001X

LED Exit Signs

This measure includes the early replacement of existing incandescent or fluorescent exit signs with a new LED exit sign. If the exit signs match those listed in <u>Table 3-11Table 3-11Table 3-10</u>, the deemed savings value for LED exit signs can be used without completing Appendix C. The deemed savings for this measure are:

Single-Sided LED Exit Signs replacing Incandescent Exit Signs

 ΔkWh = 176 kWh

 $\Delta kW_{peak} = 0.024 \ kW$

Dual-Sided LED Exit Signs replacing Incandescent Exit Signs

 ΔkWh = 353 kWh

 ΔkW_{peak} = 0.048 kWh

Single-Sided LED Exit Signs replacing Fluorescent Exit Signs

 ΔkWh = 69 kWh

 $\Delta kW_{peak} = 0.009 \ kW$

Dual-Sided LED Exit Signs replacing Fluorescent Exit Signs

 ΔkWh = 157 kWh

 ΔkW_{peak} = 0.021 kW

The savings are calculated using the algorithms in Section 3.2.2 with assumptions in <u>Table 3-11Table 3-11Table 3-10</u>.

SECTION 3: Commercial and Industrial Measures

Table 3-111110: LED Exit Signs

Component	Туре	Value	Source
kW _{base}	Fixed	Single-Sided Incandescent: 20W Dual-Sided Incandescent: 40W Single-Sided Fluorescent: 9W Dual-Sided Fluorescent: 20W	Appendix C: Standard Wattage Table
		Actual Wattage	EDC Data Gathering
kW _{inst} Fixed		Single-Sided: 2W Dual-Sided: 4W	Appendix C: Standard Wattage Table
		Actual Wattage	EDC Data Gathering
CF	Fixed	1.0	1
HOU	Fixed	8760	1
IF _{energy}	Fixed	Cooled Space: 0.12	Table 3-6: Lighting Controls AssumptionsTable 3-6Table 3-6
IF _{demand} Fixed		Cooled Space: 0.34	Table 3-6: Lighting Controls AssumptionsTable 3-6Table 3-6

1. WI Focus on Energy, "Business Programs: Deemed Savings Manual V1.0." Update Date: March 22, 2010. LED Exit Sign.

3.3 Premium Efficiency Motors

For constant speed and uniformly loaded motors, the prescriptive measurement and verification protocols described below apply for replacement of old motors with new energy efficient motors of the same rated horsepower and for New Construction. Replacements where the old motor and new motor have different horsepower ratings are considered custom measures. Motors with variable speeds, variable loading, or industrial-specific applications are also considered custom measures.

Note that the Coincidence Factor and Run Hours of Use for motors specified below do not take into account systems with multiple motors serving the same load, such as duplex motor sets with a lead-lag setup. Under these circumstances, a custom measure protocol is required. Duplex motor sets in which the second motor serves as a standby motor can utilize this protocol with an adjustment made such that savings are correctly attributed to a single motor.

3.3.1 Algorithms

From AEPS application form or EDC data gathering calculate ΔkW where:

 $\triangle kWh$ = kWh_{base} - kWh_{ee}

 kWh_{base} = 0.746 X HP X LF/ η_{base} X RHRS

 kWh_{ee} = 0.746 X HP X LF/ η_{ee} X RHRS

 ΔkW_{peak} = $kW_{base} - kW_{ee}$

 kW_{base} = 0.746 X HP X LF/ η_{base} X CF

 kW_{ee} = 0.746 X HP X LF/ η_{ee} X CF

3.3.2 Definition of Terms

HP = Rated horsepower of the baseline and energy efficient motor

LF = Load Factor. Ratio between the actual load and the rated load.

Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. The default value is 0.75. Variable loaded motors should use custom measure protocols.; LF = Measured motor kW / (Rated motor HP

x 0.746 /nameplate efficiency)²¹⁸

 η_{base} = Efficiency of the baseline motor

 η_{ee} = Efficiency of the energy-efficient motor

RHRS = Annual run hours of the motor

CF = Demand Coincidence Factor (See Section 1.4)

²¹⁸ In order to use Motor Master you would need to log. This can be done for custom measure but is not allowed for stipulated measures.

3.3.3 **Description of Calculation Method**

Relative to the algorithms in section (3.3.1), ΔkW values will be calculated for each motor improvement in any project (account number). For the efficiency of the baseline motor, if a new motor was purchased as an alternative to rewinding an old motor, the nameplate efficiency of the old motor may be used as the baseline.

Table 3-121211: Building Mechanical System Variables for Premium Efficiency Motor Calculations

Component	Туре	Value	Source
HP	Variable	Nameplate	EDC Data Gathering
		Based on logging and modeling	EDC Data Gathering
RHRS ²¹⁹	Variable	Default <u>Table 3-15Table 3-15Table</u> 3-14	From <u>Table</u> <u>3-15Table</u> <u>3-15Table</u> 3-14
LF ²²⁰	Variable	Based on spot metering ²²¹	EDC Data Gathering
	Variable	Default 75%	1
		Early Replacement: Nameplate	EDC Data Gathering
Праве	Variable	New Construction or Replace on Burnout: Default comparable standard motor. For PY1 and PY2, EPACT Standard (See Table 3-13). For PY3 and PY3, NEMA Premium (See Table 3-14)	From Table 3-13Table 3-13Table 3-12 for PY1 and PY2. From Table 3-14Table 3-14Table 3-13 for PY3 and PY4.
η _{ee}	Variable	Nameplate	EDC Data Gathering
CF ²²²	Variable	Single Motor Configuration: 74% Duplex Motor Configuration: 37%	1

Sources:

1. California Public Utility Commission. Database for Energy Efficiency Resources 2005

²¹⁹ Default Value can be used by EDC but is subject to metering and adjustment by evaluators or SWE

²²⁰ Default Value can be used by EDC but is subject to metering and adjustment by evaluators or SWE

See definition in section 3.3.2 for specific algorithm to be used when performing spot metering analysis to determine alternate load factor. ²²² Need to confirm source through TWG

Table 3-131312: Baseline Motor Nominal Efficiencies for PY1 and PY2223

	Open Drip Proof (ODP)			Totally End	closed Fan-Coo	oled (TEFC)
	# of Poles			# of Poles		
	6	4	2	6	4	2
		Speed (RPM)			Speed (RPM)	
Size HP	1200	1800	3600	1200	1800	3600
1	80.0%	82.5%	75.5%	80.0%	82.5%	75.5%
1.5	84.0%	84.0%	82.5%	85.5%	84.0%	82.5%
2	85.5%	84.0%	84.0%	86.5%	84.0%	84.0%
3	86.5%	86.5%	84.0%	87.5%	87.5%	85.5%
5	87.5%	87.5%	85.5%	87.5%	87.5%	87.5%
7.5	88.5%	88.5%	87.5%	89.5%	89.5%	88.5%
10	90.2%	89.5%	88.5%	89.5%	89.5%	89.5%
15	90.2%	91.0%	89.5%	90.2%	91.0%	90.2%
20	91.0%	91.0%	90.2%	90.2%	91.0%	90.2%
25	91.7%	91.7%	91.0%	91.7%	92.4%	91.0%
30	92.4%	92.4%	91.0%	91.7%	92.4%	91.0%
40	93.0%	93.0%	91.7%	93.0%	93.0%	91.7%
50	93.0%	93.0%	92.4%	93.0%	93.0%	92.4%
60	93.6%	93.6%	93.0%	93.6%	93.6%	93.0%
75	93.6%	94.1%	93.0%	93.6%	94.1%	93.0%
100	94.1%	94.1%	93.0%	94.1%	94.5%	93.6%
125	94.1%	94.5%	93.6%	94.1%	94.5%	94.5%
150	94.5%	95.0%	93.6%	95.0%	95.0%	94.5%
200	94.5%	95.0%	94.5%	95.0%	95.0%	95.0%

 $^{^{223}}$ Table is based on NEMA EPACT efficiency motor standards. Source to the table can be found at: $\underline{ http://www.cee1.org/ind/motrs/CEE_NEMA.pdf}$

Table 3-141413: Baseline Motor Nominal Efficiencies for PY3 and PY4224

	Ope	n Drip Proof (O # of Poles	DP)	Totally End	closed Fan-Coo	oled (TEFC)
	6	4	2	6	4	2
		Speed (RPM)			Speed (RPM)	
Size HP	1200	1800	3600	1200	1800	3600
1	82.50%	85.50%	77.00%	82.50%	85.50%	77.00%
1.5	86.50%	86.50%	84.00%	87.50%	86.50%	84.00%
2	87.50%	86.50%	85.50%	88.50%	86.50%	85.50%
3	88.50%	89.50%	85.50%	89.50%	89.50%	86.50%
5	89.50%	89.50%	86.50%	89.50%	89.50%	88.50%
7.5	90.20%	91.00%	88.50%	91.00%	91.70%	89.50%
10	91.70%	91.70%	89.50%	91.00%	91.70%	90.20%
15	91.70%	93.00%	90.20%	91.70%	92.40%	91.00%
20	92.40%	93.00%	91.00%	91.70%	93.00%	91.00%
25	93.00%	93.60%	91.70%	93.00%	93.60%	91.70%
30	93.60%	94.10%	91.70%	93.00%	93.60%	91.70%
40	94.10%	94.10%	92.40%	94.10%	94.10%	92.40%
50	94.10%	94.50%	93.00%	94.10%	94.50%	93.00%
60	94.50%	95.00%	93.60%	94.50%	95.00%	93.60%
75	94.50%	95.00%	93.60%	94.50%	95.40%	93.60%
100	95.00%	95.40%	93.60%	95.00%	95.40%	94.10%
125	95.00%	95.40%	94.10%	95.00%	95.40%	95.00%
150	95.40%	95.80%	94.10%	95.80%	95.80%	95.00%
200	95.40%	95.80%	95.00%	95.80%	96.20%	95.40%
250	95.40%	95.80%	95.00%	95.80%	96.20%	95.80%
300	95.40%	95.80%	95.40%	95.80%	96.20%	95.80%
350	95.40%	95.80%	95.40%	95.80%	96.20%	95.80%
400	95.80%	95.80%	95.80%	95.80%	96.20%	95.80%
450	96.20%	96.20%	95.80%	95.80%	96.20%	95.80%
500	96.20%	96.20%	95.80%	95.80%	96.20%	95.80%

 $^{^{224}}$ Table is based on NEMA premium efficiency motor standards. Source to the table can be found at: http://www.nema.org/stds/complimentary-docs/upload/MG1premium.pdf

Table 3-151514: Stipulated Hours of Use for Motors in Commercial Buildings225

Facility Type	Fan Motor	Chilled Water Pumps/Cooling Tower Fan	Heating Pumps
Auto Related	<u>4,056</u>	<u>1,878</u>	<u>6,000</u>
Bakery	<u>2,854</u>	<u>1,445</u>	<u>6,000</u>
Banks, Financial Centers	<u>3,748</u>	<u>1,767</u>	<u>6,000</u>
Church	<u>1,955</u>	<u>1,121</u>	<u>6,000</u>
College – Cafeteria	<u>6,376</u>	<u>2,713</u>	<u>6,000</u>
College - Classes/Administrative	<u>2,586</u>	<u>1,348</u>	<u>6,000</u>
College - Dormitory	<u>3,066</u>	<u>1,521</u>	<u>6,000</u>
Commercial Condos	<u>4,055</u>	<u>1,877</u>	<u>6,000</u>
Convenience Stores	<u>6,376</u>	<u>2,713</u>	<u>6,000</u>
Convention Center	<u>1,954</u>	<u>1,121</u>	<u>6,000</u>
Court House	<u>3,748</u>	<u>1,767</u>	<u>6,000</u>
Dining: Bar Lounge/Leisure	<u>4,182</u>	<u>1,923</u>	<u>6,000</u>
Dining: Cafeteria / Fast Food	<u>6,456</u>	<u>2,742</u>	<u>6,000</u>
Dining: Family	<u>4,182</u>	<u>1,923</u>	<u>6,000</u>
<u>Entertainment</u>	<u>1,952</u>	<u>1,120</u>	<u>6,000</u>
Exercise Center	<u>5,836</u>	<u>2,518</u>	<u>6,000</u>
Fast Food Restaurants	<u>6,376</u>	<u>2,713</u>	<u>6,000</u>
Fire Station (Unmanned)	<u>1,953</u>	<u>1,121</u>	<u>6,000</u>
Food Stores	<u>4,055</u>	<u>1,877</u>	<u>6,000</u>
<u>Gymnasium</u>	<u>2,586</u>	<u>1,348</u>	<u>6,000</u>
<u>Hospitals</u>	<u>7,674</u>	<u>3,180</u>	<u>6,000</u>
Hospitals / Health Care	<u>7,666</u>	<u>3,177</u>	<u>6,000</u>
Industrial - 1 Shift	<u>2,857</u>	<u>1,446</u>	<u>6,000</u>
Industrial - 2 Shift	<u>4,730</u>	<u>2,120</u>	<u>6,000</u>
Industrial - 3 Shift	<u>6,631</u>	<u>2,805</u>	<u>6,000</u>
<u>Laundromats</u>	<u>4,056</u>	<u>1.878</u>	6,000
Library	<u>3,748</u>	<u>1,767</u>	6,000
Light Manufacturers	<u>2,857</u>	<u>1,446</u>	6,000
Lodging (Hotels/Motels)	<u>3,064</u>	<u>1,521</u>	<u>6,000</u>
Mall Concourse	<u>4,833</u>	<u>2,157</u>	6,000
Manufacturing Facility	<u>2,857</u>	<u>1,446</u>	6,000
Medical Offices	<u>3,748</u>	<u>1,767</u>	6,000
Motion Picture Theatre	<u>1,954</u>	<u>1,121</u>	<u>6,000</u>

²²⁵ Operating hours subject to adjustment with data provided by EDCs and accepted by SWE

Multi-Family (Common Areas)	<u>7,665</u>	<u>3,177</u>	<u>6,000</u>
<u>Museum</u>	<u>3,748</u>	<u>1,767</u>	<u>6,000</u>
Nursing Homes	<u>5,840</u>	<u>2,520</u>	<u>6,000</u>
Office (General Office Types)	<u>3,748</u>	<u>1,767</u>	6,000
Office/Retail	<u>3,748</u>	<u>1,767</u>	<u>6,000</u>
Parking Garages & Lots	<u>4,368</u>	<u>1,990</u>	<u>6,000</u>
<u>Penitentiary</u>	<u>5,477</u>	<u>2,389</u>	<u>6,000</u>
Performing Arts Theatre	<u>2,586</u>	<u>1,348</u>	<u>6,000</u>
Police / Fire Stations (24 Hr)	<u>7,665</u>	<u>3,177</u>	<u>6,000</u>
Post Office	<u>3,748</u>	<u>1,767</u>	<u>6,000</u>
Pump Stations	<u>1,949</u>	<u>1,119</u>	<u>6,000</u>
Refrigerated Warehouse	<u>2,602</u>	<u>1,354</u>	<u>6,000</u>
Religious Building	<u>1,955</u>	<u>1,121</u>	<u>6,000</u>
Residential (Except Nursing Homes)	<u>3,066</u>	<u>1,521</u>	<u>6,000</u>
Restaurants	<u>4,182</u>	<u>1,923</u>	<u>6,000</u>
Retail	<u>4,057</u>	<u>1,878</u>	<u>6,000</u>
School / University	<u>2,187</u>	<u>1,205</u>	<u>6,000</u>
Schools (Jr./Sr. High)	<u>2,187</u>	<u>1,205</u>	<u>6,000</u>
Schools (Preschool/Elementary)	<u>2,187</u>	<u>1,205</u>	<u>6,000</u>
Schools (Technical/Vocational)	<u>2,187</u>	<u>1,205</u>	<u>6,000</u>
Small Services	<u>3,750</u>	<u>1,768</u>	<u>6,000</u>
Sports Arena	<u>1,954</u>	<u>1,121</u>	<u>6,000</u>
Town Hall	<u>3,748</u>	<u>1,767</u>	<u>6,000</u>
Transportation	<u>6,456</u>	<u>2,742</u>	<u>6,000</u>
Warehouse (Not Refrigerated)	<u>2,602</u>	<u>1,354</u>	<u>6,000</u>
Waste Water Treatment Plant	<u>6,631</u>	<u>2,805</u>	<u>6,000</u>
Workshop	<u>3,750</u>	<u>1,768</u>	<u>6,000</u>
Other ²²⁶	<u>3,985</u>	<u>1,852</u>	<u>6,000</u>

²²⁶ To be used only when no other category is applicable.

Building Type	Motor Usage Group	RHRS ²²⁷
	Chilled Water Pump	1610
	Heating Hot Water Pump	4959
Office - Large	Condenser Water Pump	1610
	HVAC Fan	4414
	Cooling Tower Fan	1032
	Chilled Water Pump	1375
	Heating Hot Water Pump	4959
Office - Small	Condenser Water Pump	1375
	HVAC Fan	3998
	Cooling Tower Fan	1032
	Chilled Water Pump	3801
	Heating Hot Water Pump	4959
Hospitals & Healthcare	Condenser Water Pump	3801
	HVAC Fan	7243
	Cooling Tower Fan	1032
	Chilled Water Pump	1444
	Heating Hot Water Pump	4959
Education - K-12	Condenser Water Pump	1444
	HVAC Fan	4165
	Cooling Tower Fan	1032
	Chilled Water Pump	1718
	Heating Hot Water Pump	4959
Education - College & University	Condenser Water Pump	1718
	HVAC Fan	4581
	Cooling Tower Fan	1032

Operating hours subject to adjustment with data provided by EDCs and accepted by SWE

Building Type	Motor Usage Group	RHRS ²²⁷
	Chilled Water Pump	2347
	Heating Hot Water Pump	4959
Retail	Condenser Water Pump	2347
	HVAC Fan	5538
	Cooling Tower Fan	1032
	Chilled Water Pump	2901
	Heating Hot Water Pump	4959
Restaurants - Fast Food	Condenser Water Pump	2901
	HVAC Fan	6702
	Cooling Tower Fan	1032
	Chilled Water Pump	2160
	Heating Hot Water Pump	4959
Restaurants - Sit Down	Condenser Water Pump	2160
	HVAC Fan	5246
	Cooling Tower Fan	1032
	Chilled Water Pump	2170
	Heating Hot Water Pump	4959
Other	Condenser Water Pump	2170
- Strict	HVAC Fan	5236
	Cooling Tower Fan	1032
	Other	3113

- Motor Inventory Form, PA Technical Working Group. (See notes below in Table 3-15)<u>UI</u> and CL&P Program Savings Documentation for 2012 Program Year, United Illuminating Company, September 2011
- 2. Other category calculated based on simple averages.

Table 2 15:	Notes for Sti	inulated Hours	of Hea Table

Motor Usage Group	Method of Operating Hours Calculation
Chilled Water Pump	Hours when ambient temperature is above 60°F during building operating hours
Heating Hot Water Pump	Hours when ambient temperature is below 60°F during all hours
Condenser Water Pump	Hours when ambient temperature is above 60°F during building operating-hours
HVAC Fan	Operating hours plus 20% of unoccupied hours-
Cooling Tower Fan	Cooling EFLH according to EPA 2002 ²²⁸ (1032 hours for Philadelphia)

Notes:

Ambient temperature is derived from BIN Master weather data from Philadelphia.

Operating hours for each building type is estimated for typical use.

Hospital & Healthcare operating hours differ for pumps and HVAC.

Back up calculations and reference material can be found on the PA PUC website at the following address: http://www.puc.state.pa.us/electric/xls/Act129/TRM-Motor Operating Hours Worksheet.xls

3.3.4 **Evaluation Protocol**

Motor projects achieving reported savings greater than 50,000 kWh and selected in the evaluator sample must be metered to verify reported savings. In addition, if any motor within a sampled project uses the other category to stipulate hours, the threshold is decreased to 25,000 kWh. Metering is not mandatory where the motors in question are constant speed and hours can be easily verified through a building automation system schedule that clearly shows motor run time.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls

3.4 Variable Frequency Drive (VFD) Improvements

The following protocol for the measurement of energy and demand savings applies to the installation of Variable Frequency Drives (VFDs) in standard commercial building applications shown in

<u>Table 3-17:-...</u> The baseline condition is a motor without a VFD control. The efficient condition is a motor with a VFD control.

3.4.1 Algorithms

 $\triangle kWh$ = 0.746 X HP X LF / η_{motor} X RHRS_{base} X ESF

 ΔkW_{peak} = 0.746 X HP X LF / η_{motor} X CF X DSF

3.4.2 Definitions of Terms

HP = Rated horsepower of the motor

LF = Load Factor. Ratio between the actual load and the rated load.

Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. The default value is 0.75. Variable loaded motors should use custom

measure protocols. 229

 η_{motor} = Motor efficiency at the full-rated load. For VFD installations,

this can be either an energy efficient motor or standard efficiency

motor. Motor efficiency varies with load and decreases

dramatically below 50% load; this is reflected in the ESF term of

the algorithm.

 $RHRS_{base}$ = Annual run hours of the baseline motor

²²⁹ In order to use Motor Master you would need to log. This can be done for custom measure but is not allowed for stipulated measures. A standard practice and/or load shape study would be required.

CF = Demand Coincidence Factor (See Section 1.4)

ESF = Energy Savings Factor. Percent of baseline energy

consumption saved by installing VFD.

DSF = Demand Savings Factor. Percent of baseline demand saved

by installing VFD

3.4.3 Description of Calculation Method

Relative to the algorithms in section (3.4.1), ΔkW values will be calculated for each VFD improvement in any project (account number).

Component	Туре	Value	Source
Motor HP	Variable	Nameplate	EDC Data Gathering
		Based on logging and modeling	EDC Data Gathering
RHRS ²³⁰	Variable	Table 3-15Table 3-15Table 3-14	See <u>Table 3-15Table</u> <u>3-15Table 3-14</u>
LF ²³¹	Variable	Based on spot metering and nameplate	EDC Data Gathering
		Default 75%	1
ESF	Variable	See Table 3-17Table 3-17	See Table 3-17 Table 3-17
DSF	Variable	See	See

 $^{^{230}}$ Default Value can be used by EDC but is subject to metering and adjustment by evaluators or SWE 231 Default Value can be used by EDC but is subject to metering and adjustment by evaluators or SWE

		<u>Table 3-17</u> <u>Table 3-17</u>	Table 3-17Table 3-17
Efficiency - η _{base}	Fixed	Nameplate	EDC Data Gathering
CF ²³²	Fixed	74%	1

1. California Public Utility Commission. Database for Energy Efficiency Resources 2005

Table 3-17: ESF and DSF for Typical Commercial VFD Installations²³³, 234

HVAC Fan VFD Savings Factors				
Baseline ESF DSF				
Constant Volume ²³⁵	<u>0.534</u>	<u>0.347</u>		
Air Foil/Backward Incline 0.354 0.26				

 $^{^{\}rm 232}$ Need to confirm source through TWG

UI and CL&P Program Savings Documentation for 2012 Program Year, United Illuminating Company, September
 2011Mid-Atlantic TRM Version 2.0, July 2011. Page 17445.
 UI and CL&P Program Savings Documentation for 2011 Program Year, United Illuminating Company, September

²³⁴ UI and CL&P Program Savings Documentation for 2011 Program Year, United Illuminating Company, September 2010. Page 44.

²³⁵ The ESF and DSF values for the constant volume baseline condition are taken from the 2011 Connecticut TRM whereas 2012 Connecticut TRM was used to report values for all other baseline conditions. This is because the 2012 Connecticut TRM does not report values for constant volume condition. Note that the values for all baseline conditions for HVAC fans are same in both versions of the Connecticut TRM. The values were only updated for the HVAC pump baseline conditions.

Air Foil/Backward Incline with Inlet Guide Vanes	0.227	<u>0.13</u>	
Forward Curved	<u>0.179</u>	<u>0.136</u>	
Forward Curved with Inlet Guide Vanes	0.092	0.029	
HVAC Pump VFD Savings Factors			
ITVAC FUIID VI D Saviile	S Factors		
System System	<u>ESF</u>	DSF	
		DSF 0.299	

HVAC Fan VFD Savings Factors				
Baseline-	ESF	DSF		
Constant Volume	0.717	0.466		
Air Foil/Backward Incline	0.475	0.349		
Air Foil/Backward Incline with Inlet Guide Vanes	0.304	0.174		
Forward Curved	0.240	0.182		
Forward Curved with Inlet Guide Vanes	0.123	0.039		
HVAC Pump VFD Saving	HVAC Pump VFD Savings Factors			
System-	ESF	DSF		
Chilled Water Pump	0.580	0.401		
Hot Water Pump	0.646	0.000		

3.4.4 Evaluation Protocol

VFD projects achieving reported savings greater than 50,000 kWh and selected in the evaluator sample must be metered to verify reported savings. In addition, if any VFD within a sampled project uses the other category to stipulate hours, the threshold is decreased to 25,000 kWh. Metering is not mandatory where hours can be easily verified through a building automation system schedule that clearly shows motor run time.

3.5 Variable Frequency Drive (VFD) Improvement for Industrial Air Compressors

The energy and demand savings for variable frequency drives (VFDs) installed on industrial air compressors is based on the loading and hours of use of the compressor. In industrial settings, these factors can be highly variable and may be best evaluated using a custom path. The method for measurement set forth below may be appropriate for systems that have a single compressor servicing a single load and that have some of the elements of both a deemed and custom approach.

Systems with multiple compressors are defined as non-standard applications and must follow a custom measure protocol.

3.5.1 Algorithms

 $\triangle kWh$ = 0.129 X HP X LF/ η_{motor} X RHRS_{base}

 $\Delta kW = 0.129 X HP$

 ΔkW_{peak} = 0.106 X HP

3.5.2 Definition of Terms

HP = Rated horsepower of the motor

LF = Load Factor. Ratio between the actual load and the rated load.

Motor efficiency curves typically result in motors being most efficient at approximately 75% of the rated load. The default

value is 0.75.236

 η_{base} = Efficiency of the baseline motor

RHRS = Annual run hours of the motor

CF = Demand Coincidence Factor (See Section 1.4)

²³⁶ In order to use Motor Master you would need to log. This can be done for custom measures but is not allowed for stipulated measures. A standard practice and/or load shape study would be required.

Table 3-18: Variables for Industrial Air Compressor Calculation

Component	Туре	Value	Source
Motor HP	Variable	Nameplate	EDC Data Gathering
RHRS	Variable	Based on logging and modeling	EDC Data Gathering
kW/motor HP, Saved	Fixed	0.129	1
Coincident Peak kW/motor HP	Fixed	0.106	1
LF	Variable	Based on spot metering/ nameplate	EDC Data Gathering

 Aspen Systems Corporation, Prescriptive Variable Speed Drive Incentive Development Support for Industrial Air Compressors, Executive Summary, June 20, 2005.²³⁷

 $^{^{\}rm 237}$ The basis for these factors has not been determined or independently verified.

3.6 HVAC Systems

The energy and demand savings for Commercial and Industrial HVAC is determined from the algorithms listed in below. This protocol excludes water source, ground source, and groundwater source heat pumps.

3.6.1 Algorithms

Air Conditioning (includes central AC, air-cooled DX, split systems, and packaged terminal AC)

For A/C units < 65,000 BtuH, use SEER instead of EER to calculate ΔkWh and convert SEER to EER to calculate ΔkW_{peak} using 11.3/13 as the conversion factor.

 $\angle AkWh = (BtuH_{cool} / 1000) \times (1/EER_{base} - 1/EER_{ee}) \times EFLH_{cool}$ $= (BtuH_{cool} / 1000) \times (1/EER_{base} - 1/EER_{ee}) \times EFLH_{cool}$

= $(BtuH_{cool} / 1000) X (1/SEER_{base} - 1/SEER_{ee}) X EFLH_{cool}$

 ΔkW_{peak} = (BtuH_{cool} / 1000) X (1/EER_{base} – 1/EER_{ee}) X CF

Air Source and Packaged Terminal Heat Pump

For ASHP units < 65,000 BtuH, use SEER instead of EER to calculate ΔkWh_{cool} and HSPF instead of COP to calculate ΔkWh_{heat} . Convert SEER to EER to calculate ΔkW_{peak} using 11.3/13 as the conversion factor.

 $\triangle kWh$ = $\triangle kWh_{cool} + \triangle kWh_{heat}$

 ΔkWh_{cool} = (BtuH_{cool} / 1000) X (1/EER_{base} - 1/EER_{ee}) X EFLH_{cool}

= (BtuH_{cool} / 1000) X (1/SEER_{base} - 1/SEER_{ee}) X EFLH_{cool}

 ΔkWh_{heat} = $(BtuH_{heat} / 1000) / 3.412 \times (1/COP_{base} - 1/COP_{ee}) \times EFLH_{heat}$

= $(BtuH_{heat} / 1000) X (1/HSPF_{base} - 1/HSPF_{ee}) X EFLH_{heat}$

 ΔkW_{peak} = (BtuH_{cool} / 1000) X (1/EER_{base} – 1/EER_{ee}) X CF

3.6.2 Definition of Terms

 $BtuH_{cool}$ = Rated cooling capacity of the energy efficient unit in $BtuH_{cool}$

 $BtuH_{heat}$ = Rated heating capacity of the energy efficient unit in $BtuH_{heat}$

EER_{base} = Efficiency rating of the baseline unit. For air-source AC and

ASHP units < 65,000 BtuH, SEER should be used for cooling

savings.

 EER_{ee} = Efficiency rating of the energy efficiency unit. For air-source

AC and ASHP units < 65,000 BtuH, SEER should be used for

cooling savings.

SEER_{base} = Seasonal efficiency rating of the baseline unit. For units >

65,000 BtuH, EER should be used for cooling savings.

SECTION 3: Commercial and Industrial Measures

SEER _{ee}	= Seasonal efficiency rating of the energy efficiency unit. For units > 65,000 BtuH, EER should be used for cooling savings.
COP _{base}	= Efficiency rating of the baseline unit. For ASHP units < 65,000 BtuH, HSPF should be used for heating savings.
COP _{ee}	= Efficiency rating of the energy efficiency unit. For ASHP units <65,000 BtuH, HSPF should be used for heating savings.
HSPF _{base}	= Heating seasonal performance factor of the baseline unit. For units > 65,000 BtuH, COP should be used for heating savings.
HSPF _{ee}	 Heating seasonal performance factor of the energy efficiency unit. For units > 65,000 BtuH, COP should be used for heating savings.
CF	= Demand Coincidence Factor (See Section 1.4)
EFLH _{cool}	= Equivalent Full Load Hours for the cooling season – The kWh during the entire operating season divided by the kW at design conditions.
EFLH _{heat}	= Equivalent Full Load Hours for the heating season – The kWh during the entire operating season divided by the kW at design conditions.
11.3/13	= Conversion factor from SEER to EER, based on average EER of a SEER 13 unit. See Section 2.1.

Table 3-19: Variables for HVAC Systems

Component	Туре	Value	Source		
BtuH	Variable	Nameplate data (AHRI or AHAM)	EDC's Data Gathering		
		Early Replacement: Nameplate data	EDC's Data Gathering		
EER _{base}	Variable	New Construction or Replace on Burnout: Default values from Table 3-20	See Table 3-20		
EER _{ee}	Variable	Nameplate data (AHRI or AHAM)	EDC's Data Gathering		
		Early Replacement: Nameplate data	EDC's Data Gathering		
SEER _{base}	Variable	New Construction or Replace on Burnout: Default values from Table 3-20	See Table 3-20		
SEER _{ee}	Variable	Nameplate data (AHRI or AHAM)	EDC's Data Gathering		
COP _{base} Variable		Early Replacement: Nameplate data	EDC's Data Gathering		
		New Construction or Replace on Burnout: Default values from Table 3-20	See Table 3-20		
COPee	Variable	Nameplate data (AHRI or AHAM)	EDC's Data Gathering		
		Early Replacement: Nameplate data	EDC's Data Gathering		
HSPF _{base}	Variable	New Construction or Replace on Burnout: Default values from Table 3-20	See Table 3-20		
HSPFee	Variable	Nameplate data (AHRI or AHAM)	EDC's Data Gathering		
CF	Fixed	80%	2		
EFLH _{cool}	Variable	Based on Logging or Modeling	EDC's Data Gathering		
LI LFICOOI	variable	Default values from Table 3-21	See Table 3-21		
EFLH _{heat}	Variable	Based on Logging or Modeling	EDC's Data Gathering		
EFLH _{heat} Variable		Default values from Table 3-22	See Table 3-22		

The Equivalent Full Load Hours (ELFH) for Pennsylvania are calculated based on the
degree day scaling methodology. The EFLH values reported in the Connecticut Program
Savings Documentation were adjusted using full load hours (FLH) from the US DOE
ENERGY STAR Calculator to account for differences in weather conditions. Degree day
scaling ratios were calculated using heating degree day and cooling degree day values
for seven Pennsylvania cities: Allentown, Erie, Harrisburg, Philadelphia, Pittsburgh,
Scranton, and Williamsport.

a. US Department of Energy. ENERGY STAR Calculator and Bin Analysis Models

SECTION 3: Commercial and Industrial Measures

- a.b. UI and CL&P Program Savings Documentation for 2012 Program Year, United Illuminating Company, September 2011, Pages 219-220.
- Average based on coincidence factors from Ohio, New Jersey, Mid-Atlantic, Massachusetts, Connecticut, Illinois, New York, CEE and Minnesota. (74%, 67%, 81%, 94%, 82%, 72%, 100%, 70% and 76% respectively)

Table 3-20: HVAC Baseline Efficiencies²³⁸

Equipment Type and Capacity	Cooling Baseline	Heating Baseline					
Air-Source Air Conditioners							
< 65,000 BtuH	13.0 SEER	N/A					
≥ 65,000 BtuH and <135,000 BtuH	11.2 EER	N/A					
≥ 135,000 BtuH and < 240,000 BtuH	11.0 EER	N/A					
≥ 240,000 BtuH and < 760,000 BtuH (IPLV for units with capacity-modulation only)	10.0 EER / 9.7 IPLV	N/A					
≥ 760,000 BtuH (IPLV for units with capacity-modulation only)	9.7 EER / 9.4 IPLV	N/A					
Water-Source and Evaporatively-Cooled Air Conditione	rs						
< 65,000 BtuH	12.1 EER	N/A					
≥ 65,000 BtuH and <135,000 BtuH	11.5 EER	N/A					
≥ 135,000 BtuH and < 240,000 BtuH	11.0 EER	N/A					
≥ 240,000 BtuH	11.5 EER	N/A					
Air-Source Heat Pumps							
< 65,000 BtuH	13 SEER	7.7 HSPF					
≥ 65,000 BtuH and <135,000 BtuH	11.0 EER	3.3 COP					
≥ 135,000 BtuH and < 240,000 BtuH	10.6 EER	3.2 COP					
≥ 240,000 BtuH (IPLV for units with capacity-modulation only)	9.5 EER / 9.2 IPLV	3.2 COP					
Water-Source Heat Pumps							
< 17,000 BtuH	11.2 EER	4.2 COP					
≥ 17,000 BtuH and ≤ 65,000 BtuH	12.0 EER	4.2 COP					
Ground Water Source Heat Pumps							
< 135,000 BtuH	16.2 EER	3.6 COP					
Ground Source Heat Pumps							
< 135,000 BtuH	13.4 EER	3.1 COP					
Packaged Terminal Systems (Replacements) ²³⁹							
PTAC (cooling)	10.9 - (0.213 x Cap / 1000) EER						
РТНР	10.8 - (0.213 x Cap / 1000) EER	2.9 - (0.026 x Cap / 1000) COP					

 $^{^{\}rm 238}$ Baseline values from IECC 2009, after Jan 1, 2010 or Jan 23, 2010 as applicable.

SECTION 3: Commercial and Industrial Measures

²³⁹ Cap represents the rated cooling capacity of the product in Btu/h. If the unit's capacity is less than 7,000 Btu/h, 7,000 Btu/h is used in the calculation. If the unit's capacity is greater than 15,000 Btu/h, 15,000 Btu/h is used in the calculation.

Equipment Type and Capacity	Cooling Baseline	Heating Baseline		
Packaged Terminal Systems (New Construction) ²⁴⁰				
PTAC (cooling)	12.5 - (0.213 x Cap / 1000) EER			
PTHP	12.3 - (0.213 x Cap / 1000) EER	3.2 - (0.026 x Cap / 1000) COP		

Table 3-21: Cooling EFLH for Pennsylvania Cities²⁴¹.242

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
Arena/Auditorium/Convention Center	602	332	640	508	454	711	428
College: Classes/Administrative	690	380	733	582	520	815	490
Convenience Stores	1,216	671	1,293	1,026	917	1,436	864
Dining: Bar Lounge/Leisure	912	503	969	769	688	1,077	648
Dining: Cafeteria / Fast Food	1,227	677	1,304	1,035	925	1,449	872
Dining: Restaurants	912	503	969	769	688	1,077	648
Gymnasium/Performing Arts Theatre	690	380	733	582	520	815	490
Hospitals/Health care	1,396	770	1,483	1,177	1,052	1,648	992
Industrial: 1 Shift/Light Manufacturing	727	401	773	613	548	859	517
Industrial: 2 Shift	988	545	1,050	833	745	1,166	702
Industrial: 3 Shift	1,251	690	1,330	1,055	944	1,478	889
Lodging: Hotels/Motels/Dormitories	756	418	805	638	571	894	538
Lodging: Residential	757	418	805	638	571	894	538
Multi-Family (Common Areas)	1,395	769	1,482	1,176	1,052	1,647	991
Museum/Library	851	469	905	718	642	1,005	605
Nursing Homes	1,141	630	1,213	963	861	1,348	811
Office: General/Retail	851	469	905	718	642	1,005	605
Office: Medical/Banks	851	469	905	718	642	1,005	605
Parking Garages & Lots	938	517	997	791	707	1,107	666
Penitentiary	1,091	602	1,160	920	823	1,289	775
Police/Fire Stations (24 Hr)	1,395	769	1,482	1,176	1,052	1,647	991
Post Office/Town Hall/Court House	851	469	905	718	642	1,005	605

²⁴⁰ Cap represents the rated cooling capacity of the product in Btu/h. If the unit's capacity is less than 7,000 Btu/h, 7,000 Btu/h is used in the calculation. If the unit's capacity is greater than 15,000 Btu/h, 15,000 Btu/h is used in the calculation.
²⁴¹ US Department of Energy. Energy Star Calculator and Bin Analysis Models

SECTION 3: Commercial and Industrial Measures

²⁴² The Equivalent Full Load Hours (ELFH) for Pennsylvania are calculated based on the degree day scaling methodology. The EFLH values reported in the Connecticut Program Savings Documentation were adjusted using full load hours (FLH) from the US DOE ENERGY STAR Calculator to account for differences in weather conditions.

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
Religious Buildings/Church	602	332	640	508	454	711	428
Retail	894	493	950	754	674	1,055	635
Schools/University	634	350	674	535	478	749	451
Warehouses (Not Refrigerated)	692	382	735	583	522	817	492
Warehouses (Refrigerated)	692	382	735	583	522	817	492
Waste Water Treatment Plant	1,251	690	1,330	1,055	944	1,478	889

Table 3-22: Heating EFLH for Pennsylvania Cities²⁴³.244

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
Arena/Auditorium/Convention Center	1,719	2,002	1,636	1,642	1,726	1,606	1,747
College: Classes/Administrative	1,559	1,815	1,484	1,489	1,565	1,457	1,584
Convenience Stores	603	3,148	2,573	2,582	2,715	2,526	2,747
Dining: Bar Lounge/Leisure	1,156	1,346	1,100	1,104	1,161	1,080	1,175
Dining: Cafeteria / Fast Food	582	2,066	1,689	1,695	1,782	1,658	1,803
Dining: Restaurants	1,156	1,346	1,100	1,104	1,161	1,080	1,175
Gymnasium/Performing Arts Theatre	1,559	1,815	1,484	1,489	1,565	1,457	1,584
Hospitals/Health care	276	321	263	264	277	2,526	280
Industrial: 1 Shift/Light Manufacturing	1,491	1,737	1,420	1,425	1,498	1,394	1,516
Industrial: 2 Shift	1,017	1,184	968	972	1,022	951	1,034
Industrial: 3 Shift	538	626	512	513	540	502	546
Lodging: Hotels/Motels/Dormitories	1,438	1,675	1,369	1,374	1,444	1,344	1,462
Lodging: Residential	1,438	1,675	1,369	1,374	1,444	1,344	1,462
Multi-Family (Common Areas)	277	3,148	2,573	2,582	2,715	2,526	2,747
Museum/Library	1,266	1,474	1,205	1,209	1,271	1,183	1,286
Nursing Homes	738	3,148	2,573	2,582	2,715	2,526	2,747
Office: General/Retail	1,266	884	722	725	762	709	771
Office: Medical/Banks	1,266	1,474	1,205	1,209	1,271	1,183	1,286
Parking Garages & Lots	1,110	1,292	1,056	1,060	1,114	1,037	1,128

 $^{^{\}rm 243}$ US Department of Energy. Energy Star Calculator and Bin Analysis Models

SECTION 3: Commercial and Industrial Measures

HVAC Systems

The Equivalent Full Load Hours (ELFH) for Pennsylvania are calculated based on the degree day scaling methodology. The EFLH values reported in the Connecticut Program Savings Documentation were adjusted using full load hours (FLH) from the US DOE ENERGY STAR Calculator to account for differences in weather conditions.

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
Penitentiary	829	3,148	2,573	2,582	2,715	2,526	2,747
Police/Fire Stations (24 Hr)	277	3,148	2,573	2,582	2,715	2,526	2,747
Post Office/Town Hall/Court House	1,266	1,474	1,205	1,209	1,271	1,183	1,286
Religious Buildings/Church	1,718	2,001	1,635	1,641	1,725	1,605	1,746
Retail	1,188	1,383	1,130	1,135	1,193	1,110	1,207
Schools/University	1,661	984	805	808	849	790	859
Warehouses (Not Refrigerated)	538	567	463	465	489	455	495
Warehouses (Refrigerated)	1,555	1,810	1,480	1,485	1,561	1,453	1,580
Waste Water Treatment Plant	1,265	1,473	1,204	1,208	1,270	1,182	1,285

This protocol estimates savings for installing high efficiency electric chillers as compared to chillers that meet the minimum performance allowed by the current PA Energy Code. The measurement of energy and demand savings for chillers is based on algorithms with key variables (i.e., Efficiency, Coincidence Factor, and Equivalent Full Load Hours). These prescriptive algorithms and stipulated values are valid for standard commercial applications, defined as unitary electric chillers serving a single load at the system or sub-system level. The savings calculated using the prescriptive algorithms need to be supported by a certification that the chiller is appropriately sized for site design load condition.

All other chiller applications, including existing multiple chiller configurations, existing chillers serving multiple load groups, and chillers in industrial applications are defined as non-standard applications and must follow a site specific custom protocol. Situations with existing non-VFD chillers upgrading to VFD chillers may use the protocol algorithm. The algorithms, assumptions and default factors in this Section may be applied to New Construction applications.

3.7.1 Algorithms

Efficiency ratings in EER

 $\triangle kWh$ = $Tons_{ee} X 12 X (1 / EER_{base} - 1 / EER_{ee}) X EFLH$

 ΔkW_{peak} = $Tons_{ee} X 12 X (1 / EER_{base} - 1 / EER_{ee}) X CF$

Efficiency ratings in kW/ton

 $\triangle kWh$ = $Tons_{ee} X (kW/ton_{base} - kW/ton_{ee}) X EFLH$

 ΔkW_{peak} = $Tons_{ee} X (kW/ton_{base} - kW/ton_{ee}) X CF$

3.7.2 Definition of Terms

Tons_{ee} = The capacity of the chiller (in tons) at site design conditions

accepted by the program.

 kW/ton_{base} = Design Rated Efficiency of the baseline chiller. See Table 3-23

for values.

kW/ton_{ee} = Design Rated Efficiency of the energy efficient chiller from the

manufacturer data and equipment ratings in accordance with ARI

Standards.

EER_{base} = Energy Efficiency Ratio of the baseline unit. See Table 3-24 for

values.

EER_{ee} =Energy Efficiency Ratio of the efficient unit from the

manufacturer data and equipment ratings in accordance with ARI

Standards.

CF = Demand Coincidence Factor (See Section 1.4)

Electric Chillers Page 235

EFLH

= Equivalent Full Load Hours – The kWh during the entire operating season divided by the kW at design conditions. The most appropriate EFLH from Table 3-26 shall be utilized in the calculation.

Table 3-23: Electric Chiller Variables

Component	Туре	Value	Source
Tons _{ee}	Variable	Nameplate Data	EDC Data Gathering
kW/ton _{base}	Variable	New Construction or Replace on Burnout: Default value from Table 3-24	See Table 3-24
		Early Replacement: Nameplate Data	EDC Data Gathering
kW/ton _{ee}	Variable	Nameplate Data (ARI Standards 550/590). At minimum, must satisfy standard listed in Table 3-24	EDC Data Gathering
EER _{base}	Variable	New Construction or Replace on Burnout: Default value from Table 3-24	See Table 3-24
		Early Replacement: Nameplate Data	EDC Data Gathering
EER _{ee}	Variable	Nameplate Data (ARI Standards 550/590). At minimum, must satisfy standard listed in Table 3-24	EDC Data Gathering
CF	Fixed	80%	1
EFLH	Fixed	Default value from Table 3-25	See Table 3-25

Sources:

 Average based on coincidence factors from Ohio, New Jersey, Mid-Atlantic, Massachusetts, Connecticut, Illinois, New York, CEE and Minnesota. (74%, 67%, 81%, 94%, 82%, 72%, 100%, 70% and 76% respectively)

Electric Chillers Page 236

Table 3-24: Electric Chiller Baseline Efficiencies (IECC 2009)²⁴⁵

Chiller Type	Size	Path A	Path B	Source		
Chillers	< 150 tons	< 150 tons Full load: 9.562 EER N/A IPLV: 12.500 EER		IECC 2009 Table 503.2.3 (7) Post		
	>=150 tons	Full load: 9.562 EER IPLV: 12.750 EER	N/A	1/1/2010		
Water Cooled Positive Displacement	< 75 tons	Full load: 0.780 kW/ton IPLV: 0.630 kW/ton	Full load: 0.800 kW/ton IPLV: 0.600 kW/ton			
or >=75 tons and < 150 tons		Full load: 0.775 kW/ton IPLV: 0.615 kW/ton	Full load: 0.790 kW/ton IPLV: 0.586 kW/ton			
Chiller	>=150 tons and < 300 tons	Full load: 0.680 kW/ton IPLV: 0.580 kW/ton	Full load: 0.718 kW/ton IPLV: 0.540 kW/ton			
	>=300 tons	Full load: 0.620 kW/ton IPLV: 0.540 kW/ton	Full load: 0.639 kW/ton IPLV: 0.490 kW/ton			
Water Cooled Centrifugal Chiller	<300 tons	Full load: 0.634 kW/ton IPLV: 0.596 kW/ton	Full load: 0.639 kW/ton IPLV: 0.450 kW/ton			
	>=300 tons and < 600 tons	Full load: 0.576 kW/ton IPLV: 0.549 kW/ton	Full load: 0.600 kW/ton IPLV: 0.400 kW/ton			
	>=600 tons	Full load: 0.570 kW/ton IPLV: 0.539 kW/ton	Full load: 0.590 kW/ton IPLV: 0.400 kW/ton			

Electric Chillers Page 237

²⁴⁵ IECC 2009 – Table 503.2.3(7). Chillers must satisfy efficiency requirements for both full load and IPLV efficiencies for either Path A or Path B. The table shows the efficiency ratings to be used for the baseline chiller efficiency in the savings estimation algorithm, which must be consistent with the expected operating conditions of the efficient chiller. For example, if the efficient chiller satisfies Path A and generally performs at part load, the appropriate baseline chiller efficiency is the IPLV value under Path A for energy savings. If the efficient chiller satisfies Path B and generally performs at full load, the appropriate baseline chiller efficiency is the full load value under Path B for energy savings. Generally, chillers operating above 70 percent load for a majority (50% or more) of operating hours should use Path A and chillers below 70% load for a majority of operating hours should use Path B. The "full load" efficiency from the appropriate Path A or B should be used to calculate the Peak Demand Savings as it is expected that the chillers would be under full load during the peak demand periods.

Table 3-25: Chiller Cooling EFLH by Location²⁴⁶. 247

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
Arena/Auditorium/Convention Center	602	332	640	508	454	711	428
College: Classes/Administrative	690	380	733	582	520	815	490
Convenience Stores	1,216	671	1,293	1,026	917	1,436	864
Dining: Bar Lounge/Leisure	912	503	969	769	688	1,077	648
Dining: Cafeteria / Fast Food	1,227	677	1,304	1,035	925	1,449	872
Dining: Restaurants	912	503	969	769	688	1,077	648
Gymnasium/Performing Arts Theatre	690	380	733	582	520	815	490
Hospitals/Health care	1,396	770	1,483	1,177	1,052	1,648	992
Lodging: Hotels/Motels/Dormitories	756	418	805	638	571	894	538
Lodging: Residential	757	418	805	638	571	894	538
Multi-Family (Common Areas)	1,395	769	1,482	1,176	1,052	1,647	991
Museum/Library	851	469	905	718	642	1,005	605
Nursing Homes	1,141	630	1,213	963	861	1,348	811
Office: General/Retail	851	469	905	718	642	1,005	605
Office: Medical/Banks	851	469	905	718	642	1,005	605
Parking Garages & Lots	938	517	997	791	707	1,107	666
Penitentiary	1,091	602	1,160	920	823	1,289	775
Police/Fire Stations (24 Hr)	1,395	769	1,482	1,176	1,052	1,647	991
Post Office/Town Hall/Court House	851	469	905	718	642	1,005	605
Religious Buildings/Church	602	332	640	508	454	711	428
Retail	894	493	950	754	674	1,055	635
Schools/University	634	350	674	535	478	749	451
Warehouses (Not Refrigerated)	692	382	735	583	522	817	492
Warehouses (Refrigerated)	692	382	735	583	522	817	492
Waste Water Treatment Plant	1,251	690	1,330	1,055	944	1,478	889

SECTION 3: Commercial and Industrial Measures

Electric Chillers

 $^{^{\}rm 246}$ US Department of Energy. Energy Star Calculator and Bin Analysis Models

²⁴⁷ The Equivalent Full Load Hours (ELFH) for Pennsylvania are calculated based on the degree day scaling methodology. The EFLH values reported in the Connecticut Program Savings Documentation were adjusted using full load hours (FLH) from the US DOE ENERGY STAR Calculator to account for differences in weather conditions.

Anti-sweat heater (ASH) controls sense the humidity in the store outside of reach-in, glass door refrigerated cases and turn off anti-sweat heaters during periods of low humidity. Without controls, anti-sweat heaters run continuously whether they are necessary or not. Savings are realized from the reduction in energy used by not having the heaters running at all times. In addition, secondary savings result from reduced cooling load on the refrigeration unit when the heaters are off. The ASH control is applicable to glass doors with heaters, and the savings given below are based on adding controls to doors with uncontrolled heaters. The savings calculated from these algorithms is on a per door basis for two temperatures: Refrigerator/Coolers and Freezers. A default value to be used when the case service temperature is unknown is also calculated. Furthermore, impacts are calculated for both a per-door and a per-linear-feet of case unit basis, because both are used for Pennsylvania energy efficiency programs.

3.8.1 Algorithms

Refrigerator/Cooler

 $\Delta kW_{peak per unit}$ = $(kW_{CoolerBase} / DoorFt) * CHP_{off} * (1+R_H/COP_{Cool}) * DF$

 $\triangle kWh$ = $N * \triangle kWh_{per\,unit}$

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

Freezer

 $\triangle kWh_{per\,unit}$ = $(kW_{Free\,zer\,Base} / DoorFt) * (8,760 * FHA_{off}) * (1+R_{H}/COP_{Free\,ze})$

 $\Delta kW_{peak\ per\,unit}$ = $(kW_{FreezerBase} / DoorFt) * FHP_{off} * (1+R_H/COP_{Freeze}) * DF$

 $\triangle kWh$ = $N * \triangle kWh_{per\,unit}$

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

Default (case service temperature is unknown)

This algorithm should only be used when the refrigerated case type or service temperature is unknown or this information is not tracked as part of the EDC data collection.

DoorFt }

 $\Delta kW_{peak\ per\,unit}$ = {(1- PctCooler) * $kW_{Freezer}$ / DoorFt + PctCooler * kW_{Cooler} /

DoorFt }

 ΔkWh = $N * \Delta kWh_{per unit}$

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

3.8.2 Definition of Terms

N = Number of doors or case length in linear feet having ASH

controls installed

 $kW_{CoolerBase}$ = Per door power consumption (kW) of cooler case ASHs

without controls

 $kW_{FreezerBase}$ = Per door power consumption (kW) of freezer case ASHs

without controls

8760 = Operating hours (365 days * 24 hr/day)

CHP_{off} = Percent of time cooler case ASH with controls will be off during

the peak period

CHA_{off} = Percent of time cooler case ASH with controls will be off

annually

FHP_{off} = Percent of time freezer case ASH with controls will be off

during the peak period

FHA_{off} = Percent of time freezer case ASH with controls will be off

annually

DF = Demand diversity factor, accounting for the fact that not all

anti-sweat heaters in all buildings in the population are operating

at the same time.

R_H = Residual heat fraction; estimated percentage of the heat

produced by the heaters that remains in the freezer or cooler

case and must be removed by the refrigeration unit.

COP_{Cool} = Coefficient of performance of cooler

COP_{Freeze} = Coefficient of performance of freezer

DoorFt = Conversion factor to go between per door or per linear foot

basis. Either 1 if per door or linear feet per door if per linear foot.

Both unit basis values are used in Pennsylvania energy

efficiency programs.

PctCooler = Typical percent of cases that are medium-temperature

refrigerator/cooler cases.

Table 3-26 Anti-Sweat Heater Controls - Values and References

Component	Туре	Value	Sources
N	Variable	# of doors or case length in linear feet	EDC Data Gathering
R _H	Fixed	0.65	1
Unit	Fixed	Door = 1 Linear Feet= 2.5	2
Refrigerator/Cooler			
kW _{CoolerBase}	Fixed	0.109	1
CHP _{off}	Fixed	20%	1
CHA _{off}	Fixed	85%	1
DF _{Cool}	Fixed	1	3
COP _{Cool}	Fixed	2.5	1
Freezer			
kW _{FreezerBase}	Fixed	0.191	1
FHP _{off}	Fixed	10%	1
FHA _{off}	Fixed	75%	1
DF _{Freeze}	Fixed	1	3
COP _{Freeze}	Fixed	1.3	1
PctCooler	Fixed	68%	4

Sources:

- State of Wisconsin, Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs Deemed Savings Manual, March 22, 2010.
 - a. Three door heating configurations are presented in this reference: Standard, low-heat, and no-heat. The standard configuration was chosen on the assumption that low-heat and no-heat door cases will be screened from participation.
- Review of various manufacturers' web sites yields 2.5' average door length. Sites include:
 - a. http://www.bushrefrigeration.com/bakery_glass_door_coolers.php
 - b. http://www.brrr.cc/home.php?cat=427
 - c. http://refrigeration-equipment.com/gdm s c series swing door reac.html
- 3. New York Standard Approach for Estimating Energy Savings from Energy Efficiency Measures in Commercial and Industrial Programs, Sept 1, 2009.

4. 2010 ASHRAE Refrigeration Handbook, page 15.1 "Medium- and low-temperature display refrigerator line-ups account for roughly 68 and 32%, respectively, of a typical supermarket's total display refrigerators."

Table 3-27 Recommended Fully Deemed Impact Estimates

Description	Per Door	Per Linear Ft of Case
Description	Impact	Impact
Refrigerator/Cooler		
Energy Impact	1,023 kWh per door	409 kWh per linear ft
Peak Demand Impact	0.0275 kW per door	0.0110 kW per linear ft
Freezer		
Energy Impact	1,882 kWh per door	753 kWh per linear ft
Peak Demand Impact	0.0287 kW per door	0.0115 kW per linear ft
Default (case service temperature unknown)		
Energy Impact	1,298 kWh per door	519 kWh per linear ft
Peak Demand Impact	0.0279 kW per door	0.0112 kW per linear ft

3.8.3 Measure Life

12 Years (DEER 2008, Regional Technical Forum)

3.9 High-Efficiency Refrigeration/Freezer Cases

This protocol estimates savings for installing high efficiency refrigeration and freezer cases that qualify under the ENERGY STAR rating compared to refrigeration and freezer cases allowed by federal standards. The measurement of energy and demand savings is based on algorithms with volume as the key variable.

3.9.1 Algorithms

Products that can be ENERGY STAR 2.0 qualified:

Examples of product types that may be eligible for qualification include: reach-in, roll-in, or pass-through units; merchandisers; under counter units; milk coolers; back bar coolers; bottle coolers; glass frosters; deep well units; beer-dispensing or direct draw units; and bunker freezers.

$$\triangle kWh$$
 = $(kWh_{base} - kWh_{ee})*days/year$
 $\triangle kW_{peak}$ = $(kWh_{base} - kWh_{ee})*CF/24$

Products that cannot be ENERGY STAR qualified:

Drawer cabinets, prep tables, deli cases, and open air units are not eligible for ENERGY STAR under the Version 2.0 specification.

For these products, savings should be treated under a high-efficiency case fan, Electronically Commutated Motor (ECM) option.

3.9.2 Definition of Terms

 kWh_{base}
 = The unit energy consumption of a standard unit (kWh/day)

 kWh_{ee}
 = The unit energy consumption of the ENERGY STAR-qualified unit (kWh/day)

 CF
 = Demand Coincidence Factor (See Section 1.4)

Table 3-28: Refrigeration Cases - References

= Internal Volume

Component	Туре	Value	Sources
kWh _{base}	Calculated	See Table 3-29 and Table 3-30	1
kWh _{ee}	Calculated	See Table 3-29 and Table 3-30	1
V	Variable		EDC data gathering
Days/year	Fixed	365	1
CF	Fixed	1.0	2

Sources:

1. ENERGY STAR calculator, March, 2010 update.

Load shape for commercial refrigeration equipment

Table 3-29: Refrigeration Case Efficiencies

Volume (ft³)	Glass I	Door	Solid Door		
	kWh _{ee} /day	kWh _{base} /day	kWh _{ee} /day	kWh _{base} /day	
V < 15	0.118*V + 1.382	0.12*V + 3.34	0.089*V + 1.411	0.10*V + 2.04	
15 ≤ V < 30	0.140*V + 1.050		0.037*V + 2.200		
30 ≤ V < 50	0.088*V + 2.625		0.056*V + 1.635		
50 ≤ V	0.110*V + 1.50		0.060*V + 1.416		

Table 3-30: Freezer Case Efficiencies

Volume (ft ³)	Glass I	Door	Solid Door		
	kWh _{ee} /day	kWh _{base} /day	kWh _{ee} /day	kWh _{base} /day	
V < 15	0.607*V+0.893	0.75*V + 4.10	0.250*V + 1.25	0.4*V + 1.38	
15 ≤ V < 30	0.733*V - 1.00		0.40*V - 1.00		
30 ≤ V < 50	0.250*V + 13.50		0.163*V + 6.125		
50 ≤ V	0.450*V + 3.50		0.158*V + 6.333		

If precise case volume is unknown, default savings given in tables below can be used.

Table 3-31: Refrigeration Case Savings

Volume (ft³)	Annual Energy	Savings (kWh)	Demand Impacts (kW)		
	Glass Door	Solid Door	Glass Door	Solid Door	
V < 15	722	268	0.0824	0.0306	
15 ≤ V < 30	683	424	0.0779	0.0484	
30 ≤ V < 50	763	838	0.0871	0.0957	
50 ≤ V	927	1,205	0.1058	0.1427	

Table 3-32: Freezer Case Savings

Volume (ft ³)	Annual Ener	gy Savings (kWh)	Demand Impacts (kW)		
	Glass Door	Solid Door	Glass Door	Solid Door	
V < 15	1,901	814	0.2170	0.0929	
15 ≤ V < 30	1,992	869	0.2274	0.0992	
30 ≤ V < 50	4,417	1,988	0.5042	0.2269	
50 ≤ V	6,680	3,405	0.7625	0.3887	

3.9.3 **Measure Life**

12 years

Sources:

1. Food Service Technology Center (as stated in ENERGY STAR calculator).

3.10 High-Efficiency Evaporator Fan Motors for Reach-In Refrigerated Cases

This protocol covers energy and demand savings associated with retrofit of existing shaded-pole evaporator fan motors in reach-in refrigerated display cases with either an Electronically Commutated (ECM) or Permanent Split Capacitor (PSC) motor. PSC motors must replace shaded pole (SP) motors, and ECM motors can replace either SP or PSC motors. A default savings option is offered if case temperature and/or motor size are not known. However, these parameters should be collected by EDCs for greatest accuracy.

There are two sources of energy and demand savings through this measure. There are the direct savings associated with replacement of an inefficient motor with a more efficient one, and there are the indirect savings of a reduced cooling load on the refrigeration unit due to less heat gain from the more efficient evaporator fan motor in the air-stream.

3.10.1 Algorithms

Cooler

 $\Delta kW_{peak per unit} = (W_{base} - W_{ee}) / 1,000 * LF * DC_{EvapCool} * (1 + 1 / (DG * EvapCool}) * (1 + 1 / ($

 $COP_{cooler}))$

 $\Delta kWh_{per unit}$ = $\Delta kW_{peak per unit}$ * 8,760

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

 ΔkWh = $N * \Delta kWh_{per unit}$

Freezer

 $\Delta kW_{peak per unit}$ = $(W_{base} - W_{ee}) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DG * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} * (1 + 1 / (DC * EvapFreeze*)) / 1,000 * DC_{EvapFreeze*} *$

COP_{freezer}))

 $\Delta kWh_{per unit}$ = $\Delta kW_{peak per unit} * 8,760$

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

 ΔkWh = $N * \Delta kWh_{per unit}$

Default (case service temperature not known)

 $\Delta kW_{peak per unit}$ = {(1-PctCooler) * kW_{Freeze} /motor + PctCooler* kW_{Coole} /motor}

 $\Delta kWh_{per unit}$ = $\Delta kW_{peak per unit}$ * 8,760

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

 ΔkWh = $N * kWh_{default}/motor$

3.10.2 Definition of Terms

N = Number of motors replaced

 W_{base} = Input wattage of existing/baseline evaporator fan motor

 W_{ee} = Input wattage of new energy efficient evaporator fan motor

LF = Load factor of evaporator fan motor

DC_{EvapCool} = Duty cycle of evaporator fan motor for cooler

DC_{EvapFreeze} = Duty cycle of evaporator fan motor for freezer

DG = Degradation factor of compressor COP

 COP_{cooler} = Coefficient of performance of compressor in the cooler

COP_{freezer} = Coefficient of performance of compressor in the freezer

PctCooler = Percentage of coolers in stores vs. total of freezers and

coolers

8760 = Hours per year

Table 3-33: Variables for High-Efficiency Evaporator Fan Motor

Variable	Туре	Value	Source	
W _{base}	Fixed	Default	Table 3-34	
v v base	Tixeu	Nameplate Input Wattage	EDC Data Gathering	
W _{ee}	Variable	Default	Table 3-34	
	variable	Nameplate Input Wattage	EDC Data Gathering	
LF	Fixed	0.9	1	
DC _{EvapCool}	Fixed	100%	2	
DC _{EvapFreeze}	Fixed	94.4%	2	
DG	Fixed	0.98	3	
COP _{cooler}	Fixed	2.5	1	
COP _{freezer}	Fixed	1.3	1	
PctCooler	Fixed	68%	4	

Sources:

1. PSC of Wisconsin, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, p. 4-103 to 4-106.

Table 3-34: Variables for HE Evaporator Fan Motor

Motor Category	Weighting Percentage (population) ¹	Motor Output Watts	SP Efficiency ¹	SP Input Watts	PSC Efficiency ²	PSC Input Watts	ECM Efficiency ¹	ECM Input Watts
1-14 watts (Using 9 watt as industry average)	91%	9	18%	50	41%	22	66%	14
16-23 watts (Using 19.5 watt as industry average)	3%	19.5	21%	93	41%	48	66%	30
1/20 HP (~37 watts)	6%	37	26%	142	41%	90	66%	56

Sources:

- Regional Technical Forum (RTF) as part of the Northwest Power & Conservation Council, Deemed Measures List. Grocery Display Case ECM, FY2010, V2. Accessed from RTF website http://www.nwcouncil.org/rtf/measures/Default.asp on July 30, 2010.
- AO Smith New Product Notification. I-motor 9 & 16 Watt. Stock Numbers 9207F2 and 9208F2. Web address: http://www.aosmithmotors.com/uploadedFiles/Bulletin%206029B_6-09_web.pdf. Accessed July 30, 2010.

Table 3-35: Shaded Pole to PSC Deemed Savings

Measure	W _{base} (Shaded Pole)	W _{ee} (PSC)	LF	DC _{Evap}	DG	COP per case Temp	Demand Impact (kW)	Energy Impact (kWh)
Cooler: Shaded Pole to PSC: 1-14 Watt	50	22	0.9	100%	0.98	2.5	0.0355	311
Cooler: Shaded Pole to PSC: 16-23 Watt	93	48	0.9	100%	0.98	2.5	0.0574	503
Cooler: Shaded Pole to PSC: 1/20 HP (37 Watt)	142	90	0.9	100%	0.98	2.5	0.0660	578
Freezer: Shaded Pole to PSC: 1-14 Watt	50	22	0.9	94.4%	0.98	1.3	0.0425	373
Freezer: Shaded Pole to PSC: 16-23 Watt	93	48	0.9	94.4%	0.98	1.3	0.0687	602
Freezer: Shaded Pole to PSC: 1/20 HP (37 Watt)	142	90	0.9	94.4%	0.98	1.3	0.0790	692

Table 3-36: PSC to ECM Deemed Savings

Measure	W _{base} (PSC)	W _{ee} (ECM)	LF	DC _{Evap}	DG	COP per case Temp	Demand Impact (kW)	Energy Impact (kWh)
Cooler: PSC to ECM: 1-14 Watt	22	14	0.9	100%	0.98	2.5	0.0105	92
Cooler: PSC to ECM: 16-23 Watt	48	30	0.9	100%	0.98	2.5	0.0228	200
Cooler: PSC to ECM: 1/20 HP (37 Watt)	90	56	0.9	100%	0.98	2.5	0.0433	380
Freezer: PSC to ECM: 1-14 Watt	22	14	0.9	94.4%	0.98	1.3	0.0126	110
Freezer: PSC to ECM: 16-23 Watt	48	30	0.9	94.4%	0.98	1.3	0.0273	239
Freezer: PSC to ECM: 1/20 HP (37 Watt)	90	56	0.9	94.4%	0.98	1.3	0.0518	454

Table 3-37: Shaded Pole to ECM Deemed Savings

Measure	W _{base} (Shaded Pole)	W _{ee} (ECM)	LF	DC _{Evap}	DG	COP per case Temp	Demand Impact (kW)	Energy Impact (kWh)
Cooler: Shaded Pole to ECM: 1-14 Watt	50	14	0.9	100%	0.98	2.5	0.0461	404
Cooler: Shaded Pole to ECM: 16-23 Watt	93	30	0.9	100%	0.98	2.5	0.0802	703
Cooler: Shaded Pole to ECM: 1/20 HP (37 Watt)	142	56	0.9	100%	0.98	2.5	0.1093	958
Freezer: Shaded Pole to ECM: 1-14 Watt	50	14	0.9	94.4%	0.98	1.3	0.0551	483
Freezer: Shaded Pole to ECM: 16-23 Watt	93	30	0.9	94.4%	0.98	1.3	0.0960	841
Freezer: Shaded Pole to ECM: 1/20 HP (37 Watt)	142	56	0.9	94.4%	0.98	1.3	0.1308	1146

Table 3-38: Default High-Efficiency Evaporator Fan Motor Deemed Savings

Measure	Cooler Weighted Demand Impact (kW)	Cooler Weighted Energy Impact (kWh)	Freezer Weighted Demand Impact (kW)	Freezer Weighted Energy Impact (kWh)	Default Demand Impact (kW)	Default Energy Impact (kWh)
Shaded Pole to PSC	0.0380	333	0.0455	399	0.0404	354
PSC to ECM	0.0129	113	0.0154	135	0.0137	120
Shaded Pole to ECM	0.0509	446	0.0609	534	0.0541	474

3.10.3 **Measure Life**

15 years

Sources:

1. "ActOnEnergy; Business Program-Program Year 2, June, 2009 through May, 2010. Technical Reference Manual, No. 2009-01." Published 12/15/2009.

Technical Reference Manual

- 2. "Efficiency Maine; Commercial Technical Reference User Manual No. 2007-1." Published 3/5/07.
- 3. Regional Technical Forum (RTF) as part of the Northwest Power & Conservation Council, Deemed Measures List. Grocery Display Case ECM, FY2010, V2. Accessed from RTF website http://www.nwcouncil.org/rtf/measures/Default.asp on July 30, 2010.

3.11 High-Efficiency Evaporator Fan Motors for Walk-in Refrigerated Cases

This protocol covers energy and demand savings associated with retrofit of existing shaded-pole (SP) or permanent-split capacitor (PSC) evaporator fan motors in walk-in refrigerated display cases with an electronically commutated motor (ECM). A default savings option is offered if case temperature and/or motor size are not known. However, these parameters should be collected by EDCs for greatest accuracy.

There are two sources of energy and demand savings through this measure. There are the direct savings associated with replacement of an inefficient motor with a more efficient one, and there are the indirect savings of a reduced cooling load on the refrigeration unit due to less heat gain from the more efficient evaporator fan motor in the air-stream.

3.11.1 Algorithms

Cooler

 $\Delta kW_{peak per unit}$ = $(W_{base} - W_{ee}) / 1,000 * LF * DC_{EvapCool} * (1 + 1 / (DG * EvapCool}) * (1 + 1 /$

COP_{cooler}))

 $\Delta kWh_{per unit}$ = $\Delta kW_{peak per unit}$ * HR

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

 $\triangle kWh$ = $N * \triangle kWh_{per\,unit}$

Freezer

 $\Delta kW_{peak per unit} = (W_{base} - W_{ee}) / 1,000 * LF * DC_{EvapFreeze} * (1 + 1 / (DG * EvapFreeze)) / (DG * EvapFreeze) * (DG * EvapFreeze)$

COP_{freezer}))

 $\Delta kWh_{per unit}$ = $\Delta kW_{peak per unit}$ * HR

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

 ΔkWh = $N * \Delta kWh_{per unit}$

Default (case service temperature not known)

 $\Delta kW_{peak\ per\ unit}$ = {(1-PctCooler) * $kW_{Freezer}/motor + PctCooler*kW_{Cooler}/motor$ }

 $\Delta kWh_{per unit}$ = $\Delta kW_{peak per unit} * HR$

 ΔkW_{peak} = $N * \Delta kW_{peak per unit}$

 ΔkWh = $N * \Delta kWh_{per unit}$

3.11.2 Definition of Terms

N = Number of motors replaced

 W_{base} = Input wattage of existing/baseline evaporator fan motor

 W_{ee} = Input wattage of new energy efficient evaporator fan motor

LF = Load factor of evaporator fan motor

 $DC_{EvapCool}$ = Duty cycle of evaporator fan motor for cooler

DC_{EvapFreeze} = Duty cycle of evaporator fan motor for freezer

DG = Degradation factor of compressor COP

COP_{cooler} = Coefficient of performance of compressor in the cooler

COP_{freezer} = Coefficient of performance of compressor in the freezer

PctCooler = Percentage of walk-in coolers in stores vs. total of freezers and

coolers

HR = Operating hours per year

Table 3-39: Variables for High-Efficiency Evaporator Fan Motor

Variable	Туре	Value	Source
		Default	Table 3-40
W _{base}	Fixed	Nameplate Input Wattage	EDC Data Gathering
	.,	Default	Table 3-40
W _{ee}	Variable	Nameplate Input Wattage	EDC Data Gathering
LF	Fixed	0.9	1
DC _{EvapCool}	Fixed	100%	2
DC _{EvapFreeze}	Fixed	94.4%	2
DG	Fixed	0.98	3
COP _{cooler}	Fixed	2.5	1
COP _{freezer}	Fixed	1.3	1
PctCooler	Fixed	69%	3
HR	Fixed	8,273	2

Sources:

- 1. PSC of Wisconsin, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, p. 4-103 to 4-106.
- 2. Efficiency Vermont, Technical Reference Manual 2009-54, 12/08. Hours of operation accounts for defrosting periods where motor is not operating.
- PECI presentation to Regional Technical Forum (RTF) as part of the Northwest Power & Conservation Council, Energy Smart March 2009 SP to ECM – 090223.ppt. Accessed from RTF website http://www.nwcouncil.org/energy/rtf/meetings/2009/03/default.htm on September 7, 2010.

Motor Category	Weighting Number (populatio n) ²	Motor Output Watts	SP Efficiency ^{1,2}	SP Input Watts	PSC Efficien cy ³	PSC Input Watts	ECM Efficiency ¹	ECM Input Watts
1/40 HP (16-23 watts) (Using 19.5 watt as industry average)	25%	19.5	21%	93	41%	48	66%	30
1/20 HP (~37 watts)	11.5%	37	26%	142	41%	90	66%	56
1/15 HP (~49 watts)	63.5%	49	26%	191	41%	120	66%	75

Table 3-40: Variables for HE Evaporator Fan Motor

Sources:

- Regional Technical Forum (RTF) as part of the Northwest Power & Conservation Council, Deemed Measures List. Grocery Display Case ECM, FY2010, V2. Accessed from RTF website: http://www.nwcouncil.org/rtf/measures/Default.asp on July 30, 2010
- Regional Technical Forum (RTF) as part of the Northwest Power & Conservation Council, Deemed Measures List. Deemed MeasuresV26 _walkinevapfan. Provided by Adam Hadley (adam@hadleyenergy.com). Should be made available on RTF website http://www.nwcouncil.org/rtf/measures/Default.asp
- 3. AO Smith New Product Notification. I-motor 9 & 16 Watt. Stock Numbers 9207F2 and 9208F2. Web address:
 - http://www.aosmithmotors.com/uploadedFiles/Bulletin%206029B_6-09_web.pdf. Accessed July 30, 2010.

Table 3-41: PSC to ECM Deemed Savings

Measure	W _{base} (PSC)	W _{ee} (ECM)	LF	DC _{Evap}	DG	COP per case Temp	Demand Impact (kW)	Energy Impact (kWh)
Cooler: PSC to ECM: 1/40 HP (16-23 Watt)	48	30	0.9	100%	0.98	2.5	0.0228	189
Cooler: PSC to ECM: 1/20 HP (37 Watt)	90	56	0.9	100%	0.98	2.5	0.0431	356
Cooler: PSC to ECM: 1/15 HP (49 Watt)	120	75	0.9	100%	0.98	2.5	0.0570	472
Freezer: PSC to ECM: 1/40 HP (16-23 Watt)	48	30	0.9	94.4%	0.98	1.3	0.0273	226
Freezer: PSC to ECM: 1/20 HP (37 Watt)	90	56	0.9	94.4%	0.98	1.3	0.0516	427
Freezer: PSC to ECM: 1/15 HP (49 Watt)	120	75	0.9	94.4%	0.98	1.3	0.0682	565

	Table 3-42. Shaded Fole to Low Decined Savings							
Measure	W _{base} (Shaded Pole)	W _{ee} (ECM)	LF	DC _{Evap}	DG	COP per case Temp	Demand Impact (kW)	Energy Impact (kWh)
Cooler: Shaded Pole to ECM: 1/40 HP (16-23 Watt)	93	30	0.9	100%	0.98	2.5	0.0798	661
Cooler: Shaded Pole to ECM: 1/20 HP (37 Watt)	142	56	0.9	100%	0.98	2.5	0.1090	902
Cooler: Shaded Pole to ECM: 1/15 HP (49 Watt)	191	75	0.9	100%	0.98	2.5	0.1470	1,216
Freezer: Shaded Pole to ECM: 1/40 HP (16-23 Watt)	93	30	0.9	94.4%	0.98	1.3	0.0955	790
Freezer: Shaded Pole to ECM: 1/20 HP (37 Watt)	142	56	0.9	94.4%	0.98	1.3	0.1304	1,079
Freezer: Shaded Pole to ECM: 1/15 HP (49 Watt)	191	75	0.9	94.4%	0.98	1.3	0.1759	1,455

Table 3-43: Default High-Efficiency Evaporator Fan Motor Deemed Savings

Measure	Cooler Weighted Demand Impact (kW)	Cooler Weighted Energy Impact (kWh)	Freezer Weighted Demand Impact (kW)	Freezer Weighted Energy Impact (kWh)	Default Demand Impact (kW)	Default Energy Impact (kWh)
PSC to ECM	0.0469	388	0.0561	464	0.0499	413
Shaded Pole to ECM	0.1258	1,041	0.1506	1,246	0.1335	1,105

3.11.3 Measure Life

15 years

Sources:

- 1. "ActOnEnergy; Business Program-Program Year 2, June, 2009 through May, 2010. Technical Reference Manual, No. 2009-01." Published 12/15/2009.
- "Efficiency Maine; Commercial Technical Reference User Manual, No. 2007-1." Published 3/5/07.
- Regional Technical Forum (RTF) as part of the Northwest Power & Conservation Council, Deemed Measures List. Deemed MeasuresV26 _walkinevapfan. Provided by Adam Hadley (adam@hadleyenergy.com). Should be made available on RTF website http://www.nwcouncil.org/rtf/measures/Default.asp

3.12 ENERGY STAR Office Equipment

This protocol estimates savings for installing ENERGY STAR office equipment compared to standard efficiency equipment. The measurement of energy and demand savings is based on a deemed savings value multiplied by the quantity of the measure.

3.12.1 Algorithms

The general form of the equation for the ENERGY STAR Office Equipment measure savings' algorithms is:

Number of Units X Savings per Unit

To determine resource savings, the per unit estimates in the algorithms will be multiplied by the number of units. Per unit savings are primarily derived from the June 2010 release of the ENERGY STAR calculator for office equipment.

ENERGY STAR Computer

 ΔkWh = $ESav_{COM}$

 ΔkW_{peak} = $DSav_{COM} \times CF_{COM}$

ENERGY STAR Fax Machine

 ΔkWh = $ESav_{FAX}$

 ΔkW_{peak} = $DSav_{FAX} \times CF_{FAX}$

ENERGY STAR Copier

 ΔkWh = $ESav_{COP}$

 ΔkW_{peak} = DSav_{COP} x CF_{COP}

ENERGY STAR Printer

 ΔkWh = $ESav_{PRI}$

 ΔkW_{peak} = $DSav_{PRI} \times CF_{PRI}$

ENERGY STAR Multifunction

 ΔkWh = $ESav_{MUL}$

 ΔkW_{peak} = $DSav_{MUL} \times CF_{MUL}$

ENERGY STAR Monitor

 $\triangle kWh$ = $ESav_{MON}$

 ΔkW_{peak} = $DSav_{MON} \times CF_{MON}$

3.12.2 Definition of Terms

ESav_{COM} = Electricity savings per purchased ENERGY STAR computer.

DSav_{COM} = Summer demand savings per purchased ENERGY STAR

computer.

ESav_{FAX} = Electricity savings per purchased ENERGY STAR fax

machine.

DSav_{FAX} = Summer demand savings per purchased ENERGY STAR fax

machine.

 $ESav_{COP}$ = Electricity savings per purchased ENERGY STAR copier.

DSav_{COP} = Summer demand savings per purchased ENERGY STAR

copier.

 $ESav_{PRI}$ = Electricity savings per purchased ENERGY STAR printer.

DSav_{PRI} = Summer demand savings per purchased ENERGY STAR

printer.

ESav_{MUL} = Electricity savings per purchased ENERGY STAR

multifunction machine.

 $DSav_{MUL}$ = Summer demand savings per purchased ENERGY STAR

multifunction machine.

 $ESav_{MON}$ = Electricity savings per purchased ENERGY STAR monitor.

 $DSav_{MON}$ = Summer demand savings per purchased ENERGY STAR

monitor.

CF_{COM}, CF_{FAX}, CF_{COP},

 CF_{PRI} , CF_{MUL} , CF_{MON} = Demand Coincidence Factor (See Section 1.4). The

coincidence of average office equipment demand to summer system peak equals 1 for demand impacts for all office equipment reflecting embedded coincidence in the DSav factor.

Table 3-44: ENERGY STAR Office Equipment - References

Component	Туре	Value	Sources
ESav _{COM}	Fixed	see Table 3-45	1
ESav _{FAX}			
ESav _{COP}			
ESav _{PRI}			
ESav _{MUL}			
ESav _{MON}			
DSav _{COM}	Fixed	see Table 3-45	2
DSav _{FAX}			
DSav _{COP}			
DSav _{PRI}			
DSav _{MUL}			
DSav _{MON}			
CF _{COM} , CF _{FAX} , CF _{COP} , CF _{PRI} , CF _{MUL} , CF _{MON}	Fixed	1.0, 1.0, 1.0, 1.0, 1.0	3

Sources:

- ENERGY STAR Office Equipment Savings Calculator (Calculator updated: June 2010).
 Default values were used.
- 2. Using a commercial office equipment load shape, the percentage of total savings that occur during the top 100 system hours was calculated and multiplied by the energy savings.
- 3. Coincidence factors already embedded in summer peak demand reduction estimates.

Table 3-45: ENERGY STAR Office Equipment Energy and Demand Savings Values

Measure	Energy Savings (ESav)	Demand Savings (DSav)
Computer	133 kWh	0.018 kW
Fax Machine (laser)	78 kWh	0.0105 kW
Copier (monochrome)		
1-25 images/min	73 kWh	0.0098 kW
26-50 images/min	151 kWh	0.0203 kW
51+ images/min	162 kWh	0.0218 kW
Printer (laser, monochrome)		
1-10 images/min	26 kWh	0.0035 kW
11-20 images/min	73 kWh	0.0098 kW
21-30 images/min	104 kWh	0.0140 kW
31-40 images/min	156 kWh	0.0210 kW
41-50 images/min	133 kWh	0.0179 kW
51+ images/min	329 kWh	0.0443 kW
Multifunction (laser, monochrome)		
1-10 images/min	78 kWh	0.0105 kW
11-20 images/min	147 kWh	0.0198 kW
21-44 images/min	253 kWh	0.0341 kW
45-99 images/min	422 kWh	0.0569 kW
100+ images/min	730 kWh	0.0984 kW
Monitor	15 kWh	0.0020 kW

Sources:

1. ENERGYSTAR office equipment calculators

3.12.3 Measure Life

Table 3-46: ENERGY STAR Office Equipment Measure Life

Equipment	Residential Life (years)	Commercial Life (years)
Computer	4	4
Monitor	5	4
Fax	4	4
Multifunction Device	6	6
Printer	5	5
Copier	6	6

Sources:

1. ENERGYSTAR office equipment calculators

3.13 Smart Strip Plug Outlets

Smart Strips are power strips that contain a number of controlled sockets with at least one uncontrolled socket. When the appliance that is plugged into the uncontrolled socket is turned off, the power strips then shuts off the items plugged into the controlled sockets. Qualified power strips must automatically turn off when equipment is unused / unoccupied.

3.13.1 Eligibility

This protocol documents the energy savings attributed to the installation of smart strip plugs. The most likely area of application is within commercial spaces such as isolated workstations and computer systems with standalone printers, scanners or other major peripherals that are not dependent on an uninterrupted network connection (e.g. routers and modems).

3.13.2 Algorithms

The DSMore Michigan Database of Energy Efficiency Measures performed engineering calculations using standard standby equipment wattages for typical computer and TV systems and idle times. This commercial protocol will use the computer system assumptions except it will utilize a lower idle time for commercial office use.

The computer system usage is assumed to be 10 hours per day for 5 workdays per week. The average daily idle time including the weekend (2 days of 100% idle) is calculated as follows:

(Hours per week – (Workdays x daily computer usage))/days per week = average daily commercial computer system idle time

$$(168 \text{ hours} - (5 \times 10 \text{ hours}))/7 \text{ days} = 16.86 \text{ hours}$$

The energy savings and demand reduction were obtained through the following calculations:

$$\triangle kWh$$
 = $\left(kW_{comp} \times Hr_{comp}\right) \times 365 = 123.69kWh (rounded to 124kWh)$
 $\triangle kWpeak$ = $CF \times kW_{comp} = 0.0101 \, kW$

3.13.3 Definition of Terms

The parameters in the above equation are listed below.

Table 3-47: Smart Strip Calculation Assumptions

Parameter	Component	Type	Value	Source
kW _{comp}	Idle kW of computer system	Fixed	0.0201	1
Hr _{comp}	Daily hours of computer idle time	Fixed	16.86	1
CF	CF Coincidence Factor		0.50	1

Sources:

1. DSMore Michigan Database of Energy Efficiency Measures

3.13.4 Deemed Savings

 ΔkWh = 124 kWh

 ΔkW_{peak} = 0.0101 kW

3.13.5 Measure Life

To ensure consistency with the annual savings calculation procedure used in the DSMore MI database, the measure of **5 years** is taken from DSMore.

3.13.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

3.14 Beverage Machine Controls

This measure is intended for the addition of control systems to existing, non-ENERGY STAR, beverage vending machines. The applicable machines contain refrigerated non-perishable beverages that are kept at an appropriate temperature. The control systems are intended to reduce energy consumption due to lighting and refrigeration during times of lower customer sales. Typical control systems contain a passive infrared occupancy sensor to shut down the machine after a period of inactivity in the area. The compressor will power on one to three hour intervals sufficient to maintain beverage temperature, and when powered on at any time will be allowed to complete at least one cycle to prevent excessive wear and tear.

Technical Reference Manual

The baseline equipment is taken to be an existing standard refrigerated beverage vending machine that does not contain control systems to shut down the refrigeration components and lighting during times of low customer use.

3.14.1 Algorithms

Energy savings are dependent on decreased machine lighting and cooling loads during times of lower customer sales. The savings will be dependent on the machine environment, noting that machines placed in locations such as a day-use office will result in greater savings than those placed in high-traffic areas such as hospitals that operate around the clock. The algorithm below takes into account varying scenarios and can be taken as representative of a typical application.

 $\triangle kWh$ = $kWh_{base} \times E$ $\triangle kW_{beak}$ = 0

There are no peak demand savings because this measure is aimed to reduce demand during times of low beverage machine use, which will typically occur during off-peak hours.

3.14.2 Definition of Terms

kWh_{base} = baseline annual beverage machine energy consumption

(kWh/year)

E = efficiency factor due to control system, which represents

percentage of energy reduction from baseline

3.14.3 Energy Savings Calculations

The decrease in energy consumption due to the addition of a control system will depend on the number or hours per year during which lighting and refrigeration components of the beverage machine are powered down. The average decrease in energy use from refrigerated beverage vending machines with control systems installed is 46% ^{248,249,250,251}. It should be noted that

²⁴⁸ Deru, M., et al., (2003), *Analysis of NREL Cold-Drink Vending Machines for Energy Savings*, National Renewable Energy Laboratory, NREL/TP-550-34008, http://www.nrel.gov/docs/fy03osti/34008.pdf

various studies found savings values ranging between 30-65%, most likely due to differences in customer occupation.

The default baseline energy consumption and default energy savings are shown in Table 3-48. The default energy savings were derived by applying a default efficiency factor of $E_{default}$ = 46% to the energy savings algorithm above. Where it is determined that the default efficiency factor (E) or default baseline energy consumption (kWh_{base}) is not representative of specific applications, EDC data gathering can be used to determine an application-specific energy savings factor (E), and/or baseline energy consumption (kWh_{base}), for use in the Energy Savings algorithm.

Machine Can **Default Baseline Energy** Default Energy Savings (ΔkWh); Capacity Consumption (kWh_{base}) (kWh/year) (kWh/year) < 500 1,432 3,113 500 3,916 1,801 600 3.551 1.633 700 4,198 1,931 +008 3,318 1,526

Table 3-48: Beverage Machine Controls Energy Savings²⁵²

3.14.4 Measure Life

Measure life = 5 years

Sources:

- DEER EUL Summary, Database for Energy Efficient Resources, accessed 8/2010, http://www.deeresources.com/deer0911planning/downloads/EUL Summary 10-1-08.xls
- Deru et al. suggest that beverage machine life will be extended from this measure due to fewer lifetime compressor cycles.
- 3. U.S. Department of Energy Appliances and Commercial Equipment Standards, http://www1.eere.energy.gov/buildings/appliance_standards/commercial/beverage_machines.html

²⁴⁹ Ritter, J., Hugghins, J., (2000), *Vending Machine Energy Consumption and VendingMiser Evaluation*, Energy Systems Laboratory, Texas A&M University System, http://repository.tamu.edu/bitstream/handle/1969.1/2006/ESL-TR-00-11-01.pdf;jsessionid=6E215C09FB80BC5D2593AC81E627DA97?sequence=1

²⁵⁰ State of Ohio Energy Efficiency Technical Reference Manual, Including Predetermined Savings Values and Protocols for Determining Energy and Demand Savings, August 6, 2010. Prepared for the Public Utilities Commission of Ohio by Vermont Energy Investment Corporation

²⁵¹ Vending Machine Energy Savings, Michigan Energy Office Case Study 05-0042, http://www.michigan.gov/documents/CIS EO Vending Machine 05-0042 155715 7.pdf

²⁵² ENERGY STAR Calculator, Assumptions for Vending Machines, accessed 8/2010 http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Vend_MachBulk.xls

3.15 High-Efficiency Ice Machines

This measure applies to the installation of a high-efficiency ice machine as either a new item or replacement for an existing unit. The machine must be air-cooled to qualify, which can include self-contained, ice-making heads, or remote-condensing units. The machine must conform with the minimum ENERGY STAR efficiency requirements, which are equivalent to the CEE Tier 2 specifications for high-efficiency commercial ice machines²⁵³. A qualifying machine must also meet the ENERGY STAR requirements for water usage given under the same criteria.

The baseline equipment is taken to be a unit with efficiency specifications less than or equal to CEE Tier 1 equipment.

3.15.1 Algorithms

The energy savings are dependent on machine type and capacity of ice produced on a daily basis. A machine's capacity is generally reported as an ice harvest rate, or amount of ice produced each day.

3.15.2 Definition of Terms

kWh _{base}	= baseline ice machine energy usage per 100 lbs of ice (kWh/100lbs)
kWh _{he}	= high-efficiency ice machine energy usage per 100 lbs of ice (kWh/100lbs)
Н	= Ice harvest rate per 24 hrs (lbs/day)
D	= duty cycle of ice machine expressed as a percentage of time machine produces ice.
365	= (days/year)
100	= conversion to obtain energy per pound of ice (lbs/100lbs)
8760	= (hours/year)
CF	= Demand Coincidence Factor (See Section 1.4)

The reference values for each component of the energy impact algorithm are shown in Table 3-49. A default duty cycle (D) is provided as based on referenced values from several studies, however, EDC data gathering may be used to adjust the duty cycle for custom applications.

²⁵³ Commercial Ice Machines Key Product Criteria, ENERGY STAR, accessed 8/2010, http://www.energystar.gov/index.cfm?c=comm_ice_machines.pr_crit_comm_ice_machines

Table 3-49: Ice Machine Reference values for algorithm components

Term	Туре	Value	Source
kWh _{base}	Variable	Table 3-50	1
kWh _{he}	Variable	Table 3-50	2
Н	Variable	Manufacturer Specs	EDC Data Gathering
D	Variable	Default = 0.4 ²⁵⁴	3
		Custom	EDC Data Gathering
Ice maker type	Variable	Manufacturer Specs	EDC Data Gathering
CF	Fixed	0.77	4

Sources:

- 1. Specifications for CEE Tier 1 ice machines.
- 2. Specifications for CEE Tier 2 ice machines.
- 3. State of Ohio Energy Efficiency Technical Reference Manual cites a default duty cycle of 40% as a conservative value. Other studies range as high as 75%.
- 4. State of Ohio Energy Efficiency Technical Reference Manual cites a CF = 0.772 as adopted from the Efficiency Vermont TRM. Assumes CF for ice machines is similar to that for general commercial refrigeration equipment.

Energy Savings Calculations 3.15.3

Ice machine energy usage levels are dependent on the ice harvest rate (H), and are calculated using CEE specifications as shown in <u>Table 3-50Table 3-50</u>Table 3-50. The default energy consumption for the baseline ice machine (kWh_{base}) is calculated using the formula for CEE Tier 1 specifications, and the default energy consumption for the high-efficiency ice machine (kWhhe) is calculated using the formula for CEE Tier 2 specifications²⁵⁵. The two energy consumption values are then applied to the energy savings algorithm above.

²⁵⁴ State of Ohio Energy Efficiency Technical Reference Manual, Including Predetermined Savings Values and Protocols for Determining Energy and Demand Savings, August 6, 2010. Prepared for the Public Utilities Commission of Ohio by Vermont Energy Investment Corporation.

²⁵⁵ High Efficiency Specifications for Commercial Ice Machines, Consortium for Energy Efficiency, accessed 8/2010, http://www.cee1.org/com/com-kit/files/IceSpecification.pdf

Table 3-50: Ice Machine Energy Usage²⁵⁶

Ice machine type	ice harvest rate (H) (Ibs/day)	Baseline energy use per 100 lbs of ice (kWh _{base})	High-efficiency energy use per 100 lbs of ice (kWh _{he})
Ice-Making Head	<450	10.26 – 0.0086*H	9.23 – 0.0077*H
ice-iviaking rieau	≥450	6.89 – 0.0011*H	6.20 - 0.0010*H
Remote-Condensing w/out	<1000	8.85 – 0.0038*H	8.05 – 0.0035*H
remote compressor	≥1000	5.1	4.64
Remote-Condensing with	<934	8.85 – 0.0038*H	8.05 – 0.0035*H
remote compressor	≥934	5.3	4.82
Self-Contained	<175	18 – 0.0469*H	16.7 – 0.0436*H
ocii-oontained	≥175	9.8	9.11

3.15.4 **Measure Life**

Measure life = 10 years²⁵⁷.

Sources:

1. Karas, A., Fisher, D. (2007), A Field Study to Characterize Water and Energy Use of Commercial Ice-Cube Machines and Quantify Saving Potential, Food Service Technology Center, December 2007,

http://www.fishnick.com/publications/appliancereports/special/Icecube machine field study.pdf

2. Energy-Efficient Products, How to Buy an Energy-Efficient Commercial Ice Machine, U.S. Department of Energy, Energy Efficiency and Renewable Energy, accessed August 2010 at http://www1.eere.energy.gov/femp/procurement/eep ice makers.html

²⁵⁶ Specifications for Tier 1 and Tier 2 ice machines are being revised by CEE, however exact criteria and timeline have not been set as of the time of this report.

²⁷ DEER EUL Summary, Database for Energy Efficient Resources, accessed 8/2010, http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

3.16 Wall and Ceiling Insulation

Wall and ceiling insulation is one of the most important aspects of the energy system of a building. Insulation dramatically minimizes energy expenditure on heating and cooling. Increasing the R-value of wall insulation above building code requirements generally lowers heating and cooling costs. Incentives are offered with regard to increases in R-value rather than type, method, or amount of insulation.

Technical Reference Manual

An R-value indicates the insulation's resistance to heat flow – the higher the R-value, the greater the insulating effectiveness. The R-value depends on the type of insulation and its material, thickness, and density. When calculating the R-value of a multilayered installation, add the Rvalues of the individual layers.

3.16.1 Eligibility

This measure applies to non-residential buildings heated and/or cooled using electricity. Existing construction buildings are required to meet or exceed the code requirement. New construction buildings must exceed the code requirement. Eligibility may vary by PA EDC; savings from chiller-cooled buildings are not included.

3.16.2 **Algorithms**

The savings depend on four main factors: baseline condition, heating system type and size, cooling system type and size, and location. The algorithm for Central AC and Air Source Heat Pumps (ASHP) is as follows

Ceiling Insulation

∆kWh = ΔkWh_{cool} + ΔkWh_{heat}

 ΔkWh_{cool} $= (A \times CDD \times 24)/(EER \times 1000) \times (1/R_i - 1/R_f)$

 $= (A \times HDD \times 24)/(COP \times 3413) \times (1/R_i - 1/R_t)$ ∆kWh_{heat}

 ΔkW_{peak} = $\triangle kWh_{cool}$ / $EFLH_{cool}$ X CF

Wall Insulation

∆kWh = $\triangle kWh_{cool}$ + $\triangle kWh_{heat}$

 ΔkWh_{cool} $= (A \times CDD \times 24)/(EER \times 1000) \times (1/R_i - 1/R_f)$

∆kWh_{heat} $= (A \times HDD \times 24)/(COP \times 3413) \times (1/R_i - 1/R_t)$

= ΔkWh_{cool} / EFLH_{cool} X CF ΔkW_{peak}

3.16.3 Definition of Terms

A = area of the insulation that was installed in square feet

HDD = heating degree days with 65 degree base

CDD = cooling degree days with a 65 degree base

24 = hours per day

1000 = W per kW

3413 = Btu per kWh

 R_i = the R-value of the insulation and support structure before the

additional insulation is installed

 R_f = the total R-value of all insulation after the additional insulation

is installed

EFLH = effective full load hours

CF = Demand Coincidence Factor (See Section 1.4)

EER = efficiency of the cooling system

COP = efficiency of the heating system

Table 3-51: Non-Residential Insulation – Values and References

Component	Туре	Values	Sources
А	Variable	Application	AEPS Application; EDC Data Gathering
		Allentown = 5318	1
		Erie = 6353	
		Harrisburg = 4997	
HDD	Fixed	Philadelphia = 4709	
		Pittsburgh = 5429	
		Scranton = 6176	
		Williamsport = 5651	
		Allentown = 787	1
		Erie = 620	
		Harrisburg = 955	
CDD	Fixed	Philadelphia = 1235	
		Pittsburgh = 726	
		Scranton = 611	
		Williamsport = 709	
24	Fixed	24	n/a

SECTION 3: Commercial and Industrial Measures

Component	Туре	Values	Sources
1000	Fixed	1000	n/a
Ceiling R _i	Existing: Variable New Construction: Fixed	For new construction buildings and when variable is unknown for existing buildings: See Table 3-52 and Table 3-53 for values by building type	AEPS Application; EDC Data Gathering; 2, 4
Wall R _i	Existing: Variable New Construction: Fixed	For new construction buildings and when variable is unknown for existing buildings: See Table 3-52 and Table 3-53 for values by building type	AEPS Application; EDC Data Gathering; 3, 4
R _f	Variable		AEPS Application; EDC Data Gathering;
EFLH _{cool}	Fixed	See Table 3-55	5
CF	Fixed	67%	5
EER	Fixed	See Table 3-54	6, 7
COP	Fixed	See Table 3-54	6, 7

Sources:

- U.S. Department of Commerce. Climatography of the United States No. 81 Supplement No. 2. Annual Degree Days to Selected Bases 1971 – 2000. Scranton uses the values for Wilkes-Barre. HDD were adjusted downward to account for business hours. CDD were not adjusted for business hours, as the adjustment resulted in an increase in CDD and so not including the adjustment provides a conservative estimate of energy savings.
- 2. The initial R-value for a ceiling for existing buildings is based on the EDC eligibility requirement that at least R-11 be installed and that the insulation must meet at least IECC 2009 code. The initial R-value for new construction buildings is based on IECC 2009 code for climate zone 5.
- 3. The initial R-value for a wall assumes that there was no existing insulation, or that it has fallen down resulting in an R-value equivalent to that of the building materials. Building simulation modeling using DOE-2.2 model (eQuest) was performed for a building with no wall insulation. The R-value is dependent upon the construction materials and their thickness. Assumptions were made about the building materials used in each sector.
- 4. 2009 International Energy Conservation Code. Used climate zone 5 which covers the majority of Pennsylvania. The R-values required by code were used as inputs in the eQuest building simulation model to calculate the total R-value for the wall including the building materials.
- 5. EFLH values and coincidence factors for HVAC peak demand savings calculations come from the Pennsylvania Technical Reference Manual. June 2010.
- 6. Baseline values from ASHRAE 90.1-2004 for existing buildings.
- 7. Baseline values from IECC 2009 for new construction buildings.

Table 3-52: Ceiling R-Values by Building Type

Building Type	Ceiling R _i -Value (New Construction)	Ceiling R _i -Value (Existing)
Large Office	20	9
Large Retail		
Lodging		
Health		
Education		
Grocery		
Small Office	24.4	13.4
Warehouse		
Small Retail	20	9
Restaurant		
Convenience Store		

Table 3-53: Wall R-Values by Building Type

Building Type	Wall R _i -Value (New Construction)	Wall R _i -Value (Existing)
Large Office	14	1.6
Small Office	14	3.0
Large Retail		
Small Retail		
Convenience Store		
Lodging	13	2.0
Health		
Education		
Grocery		
Restaurant	14	3.2
Warehouse	14	2.5

Table 3-54: HVAC Baseline Efficiencies for Non-Residential Buildings

	Existing Building ²⁵⁸		New Construct	tion ²⁵⁹
Equipment Type and Capacity	Cooling Efficiency	Heating Efficiency	Cooling Efficiency	Heating Efficiency
Air-Source Air Conditioners				
< 65,000 BtuH	10.0 SEER	N/A	13.0 SEER	N/A
≥ 65,000 BtuH and <135,000 BtuH	10.3 EER	N/A	11.2 EER	N/A
≥ 135,000 BtuH and < 240,000 BtuH	9.7 EER	N/A	11.0 EER	N/A
≥ 240,000 BtuH and < 760,000 BtuH (IPLV for units with capacity-modulation only)	9.5 EER	N/A	10.0 EER / 9.7 IPLV	N/A
≥ 760,000 BtuH (IPLV for units with capacity- modulation only)	9.2 EER	N/A	9.7 EER / 9.4 IPLV	N/A
Water-Source and Evaporatively-Cooled	Air Conditioners			
< 65,000 BtuH	12.1 EER	N/A	12.1 EER	N/A
≥ 65,000 BtuH and <135,000 BtuH	11.5 EER	N/A	11.5 EER	N/A
≥ 135,000 BtuH and < 240,000 BtuH	11.0 EER	N/A	11.0 EER	N/A
≥ 240,000 BtuH	11.0 EER	N/A	11.5 EER	N/A
Air-Source Heat Pumps				
< 65,000 BtuH	10.0 SEER	6.8 HSPF	13 SEER	7.7 HSPF
≥ 65,000 BtuH and <135,000 BtuH	10.1 EER	3.2 COP	11.0 EER	3.3 COP
≥ 135,000 BtuH and < 240,000 BtuH	9.3 EER	3.1 COP	10.6 EER	3.2 COP
≥ 240,000 BtuH (IPLV for units with capacity-modulation only)	9.0 EER	3.1 COP	9.5 EER / 9.2 IPLV	3.2 COP
Water-Source Heat Pumps				
< 17,000 BtuH	11.2 EER	4.2 COP	11.2 EER	4.2 COP
≥ 17,000 BtuH and ≤ 65,000 BtuH	12.0 EER	4.2 COP	12.0 EER	4.2 COP
Ground Water Source Heat Pumps				
< 135,000 BtuH	16.2 EER	3.6 COP	16.2 EER	3.6 COP
Ground Source Heat Pumps				
< 135,000 BtuH	13.4 EER	3.1 COP	13.4 EER	3.1 COP
Packaged Terminal Systems				
PTAC (cooling)	10.9 - (0.213 x Cap / 1000) EER	N/A	12.5 - (0.213 x Cap / 1000) EER	N/A
РТНР	10.8 - (0.213 x Cap / 1000) EER	2.9 - (0.026 x Cap / 1000) COP	12.3 - (0.213 x Cap / 1000) EER	3.2 - (0.026 x Cap / 1000) COP

²⁵⁸ ASHRAE 90.1-2004, Tables 6.8.1A, 6.8.1B, and 6.8.1D 259 IECC 2009, Tables 503.2.3(1), 503.2.3(2), and 503.2.3(3)

Table 3-55: Cooling EFLH for Key PA Cities²⁶⁰

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
Arena/Auditorium/Convention Center	602	332	640	508	454	711	428
College: Classes/Administrative	690	380	733	582	520	815	490
Convenience Stores	1,216	671	1,293	1,026	917	1,436	864
Dining: Bar Lounge/Leisure	912	503	969	769	688	1,077	648
Dining: Cafeteria / Fast Food	1,227	677	1,304	1,035	925	1,449	872
Dining: Restaurants	912	503	969	769	688	1,077	648
Gymnasium/Performing Arts Theatre	690	380	733	582	520	815	490
Hospitals/Health care	1,396	770	1,483	1,177	1,052	1,648	992
Lodging: Hotels/Motels/Dormitories	756	418	805	638	571	894	538
Lodging: Residential	757	418	805	638	571	894	538
Multi-Family (Common Areas)	1,395	769	1,482	1,176	1,052	1,647	991
Museum/Library	851	469	905	718	642	1,005	605
Nursing Homes	1,141	630	1,213	963	861	1,348	811
Office: General/Retail	851	469	905	718	642	1,005	605
Office: Medical/Banks	851	469	905	718	642	1,005	605
Parking Garages & Lots	938	517	997	791	707	1,107	666
Penitentiary	1,091	602	1,160	920	823	1,289	775
Police/Fire Stations (24 Hr)	1,395	769	1,482	1,176	1,052	1,647	991
Post Office/Town Hall/Court House	851	469	905	718	642	1,005	605
Religious Buildings/Church	602	332	640	508	454	711	428
Retail	894	493	950	754	674	1,055	635
Schools/University	634	350	674	535	478	749	451
Warehouses (Not Refrigerated)	692	382	735	583	522	817	492
Warehouses (Refrigerated)	692	382	735	583	522	817	492
Waste Water Treatment Plant	1,251	690	1,330	1,055	944	1,478	889

²⁶⁰ US Department of Energy. ENERGY STAR Calculator and Bin Analysis Models

3.16.4 Measure Life

15 years

Source:

 DEER uses 20 years; Northwest Regional Technical Forum uses 45 years. Capped based on the requirements of the Pennsylvania Technical Reference Manual (June 2010). This value is less than that used by other jurisdictions for insulation.

3.17 Strip Curtains for Walk-In Freezers and Coolers

Measure Name	Strip Curtains for Walk-In Coolers and Freezers
Target Sector	Commercial Refrigeration
Measure Unit	Walk-in unit door
Unit Energy Savings	Fixed
Unit Peak Demand Reduction	Fixed
Measure Life	4 years

Strip curtains are used to reduce the refrigeration load associated with the infiltration of non-refrigerated air into the refrigerated spaces of walk-in coolers or freezers.

The primary cause of air infiltration into walk-in coolers and freezers is the air density difference between two adjacent spaces of different temperatures. The total refrigeration load due to infiltration through the main door into the unit depends on the temperature differential between the refrigerated and non-refrigerated airs, the door area and height, and the duration and frequency of door openings. The avoided infiltration depends on the efficacy of the newly installed strip curtains as infiltration barriers²⁶¹, and on the efficacy of the supplanted infiltration barriers, if applicable. The calculation of the refrigeration load due to air infiltration and the energy required to meet that load is rather straightforward, but relies on critical assumptions regarding the aforementioned operating parameters. All the assumptions in this protocol are based on values that were determined by direct measurement and monitoring of over 100 walk-in units in the 2006-2008 evaluation for the CA Public Utility Commission²⁶².

3.17.1 Eligibility

This protocol documents the energy savings attributed to strip curtains applied on walk-in cooler and freezer doors in commercial applications. The most likely areas of application are large and small grocery stores, supermarkets, restaurants and refrigerated warehouse. The baseline case is a walk-in cooler or freezer that previously had either no strip curtain installed or an old, ineffective strip curtain installed. The efficient equipment is a strip curtain added to a walk-in cooler or freezer. Strip curtains must be at least 0.06 inches thick. Low temp strip curtains must be used on low temp applications²⁶³.

3.17.2 Algorithms

 $\triangle kWh$ = $\triangle kWh/sqft \times A$ $\triangle kW_{peak}$ = $\triangle kW/sqft \times A$

²⁶¹ We define *curtain efficacy* as the fraction of the potential airflow that is blocked by an infiltration barrier. For example, a brick wall would have an efficacy of 1.0, while the lack of any infiltration barrier corresponds to an efficacy of 0.

²⁶² See source 1 for <u>Table 3-12Table 3-12Table 3-11</u>.

 $^{^{263}\} http://energysmartonline.org/documents/EnergySmart_BPA_T\&Cs.pdf$

The annual energy savings due to infiltration barriers is quantified by multiplying savings per square foot by area using assumptions for independent variables described in the protocol introduction. The source algorithm from which the savings per square foot values are determined is based on Tamm's equation²⁶⁴ (an application of Bernoulli's equation) and the ASHRAE handbook²⁶⁵. To the extent that evaluation findings are able to provide more reliable site specific inputs assumptions, they may be used in place of the default per square foot savings using the following equation.

The peak demand reduction is quantified by multiplying savings per square foot by area. The source algorithm is the annual energy savings divided by 8760. This assumption is based on general observation that refrigeration is constant for food storage, even outside of normal operating conditions. This is the most conservative approach in lieu of a more sophisticated model.

$$\Delta kW_{peak} = \Delta kWh / 8760$$

The ratio of the average energy usage during Peak hours to the total annual energy usage is taken from the load shape data collected by ADM for a recent evaluation for the CA Public Utility Commission²⁶⁶ in the study of strip curtains in supermarkets, convenience stores, and restaurants.

3.17.3 Definition of Terms

The variables in the main equations are defined below:

△kWh/sqft = Average annual kWh savings per square foot of infiltration barrier

△kW/sqft = Average kW savings per square foot of infiltration barrier

A = Doorway area, ft2

The variables in the source equation are defined below:

 t_{open} = Minutes walk-in door is open per day

 η_{new} = Efficacy of the new strip curtain – an efficacy of 1 corresponds

to the strip curtain thwarting all infiltration, while an efficacy of

zero corresponds to the absence of strip curtains.

 η_{old} = Efficacy of the old strip curtain

²⁶⁴ Kalterveluste durch kuhlraumoffnungen. Tamm W,.Kaltetechnik-Klimatisierung 1966;18;142-144

²⁶⁵ American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE). 2006. *ASHRAE Handbook*, Refrigeration: 13.4, 13.6

²⁶⁶ http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-2010.pdf

Rev	Date:	June	201	2201	3 ([RAFT)

20	= Product of 60 minutes per hour and an integration factor of 1/3 ²⁶⁷
$C_{\mathcal{D}}$	= Discharge Coefficient: empirically determined scale factors that account for differences between infiltration as rates predicted by application Bernoulli's law and actual observed infiltration rates
T_i	= Dry-bulb temperature of infiltrating air, Rankine
T_r	= Dry-bulb temperature of refrigerated air, Rankine
g	= Gravitational constant = 32.174 ft/s2
Н	= Doorway height, ft
h_i	= Enthalpy of the infiltrating air, Btu/lb. Based on 55% RH.
h _r	= Enthalpy of the refrigerated air, Btu/lb. Based on 80% RH.
$oldsymbol{ ho}_i$	= Density of the infiltration air, lb/ft3. Based on 55% RH.
$ ho_r$	= Density of the refrigerated air, lb/ft3. Based on 80% RH.
3413	= Conversion factor: number of BTUs in one kWh
COP_{adj}	= Time-dependent (weather dependent) coefficient of performance of the refrigeration system. Based on nominal COP of 1.5 for freezers and 2.5 for coolers.
ETD	= Average Usage _{Peak} / Annual Energy Usage

The default savings values are listed in <u>Table 3-56Table 3-56</u>. Default parameters used in the source equations are listed in Table 3-57, Table 3-58, Table 3-59, and Table 3-60. The source equations and the values for the input parameters are adapted from the 2006-2008 California Public Utility Commission's evaluation of strip curtains²⁶⁸. The original work included 8760-hourly bin calculations. The values used herein represent annual average values. For

²⁶⁷ In the original equation (Tamm's equation) the height is taken to be the difference between the midpoint of the opening and the 'neutral pressure level' of the cold space. In the case that there is just one dominant doorway through which infiltration occurs, the neutral pressure level is half the height of the doorway to the walk-in refrigeration unit. The refrigerated air leaks out through the lower half of the door, and the warm, infiltrating air enters through the top half of the door. We deconstruct the lower half of the door into infinitesimal horizontal strips of width W and height dh. Each strip is treated as a separate window, and the air flow through each infinitesimal strip is given by $60 \times C_D \times A \times \{[(T_i - T_r)/T_i] \times g \times \Delta H_{NPL}\}^0.5$ where ΔH_{NPL} represents the distance to the vertical midpoint of the door. In effect, this replaces the implicit wh1.5 (one power from the area, and the other from ΔH_{NPL}) with the integral from 0 to h/2 of wh'0.5 dh' which results in wh1.5/(3×20.5). For more information see: Are They Cool(ing)?:Quantifying the Energy Savings from Installing / Repairing Strip Curtains, Alereza, Baroiant, Dohrmann, Mort, Proceedings of the 2008 IEPEC Conference.

²⁰⁰⁸⁺Energy+Efficiency+Evaluation+Report.htm. The scale factors have been determined with tracer gas measurements on over 100 walk-in refrigeration units during the California Public Utility Commission's evaluation of the 2006-2008 CA investor owned utility energy efficiency programs. The door-open and close times, and temperatures of the infiltrating and refrigerated airs are taken from short-term monitoring of over 100 walk-in units. The temperature and humidity of the infiltrating air and the COP of the units have been modified to reflect the PA climate.

example, the differences in the temperature between the refrigerated and infiltrating airs are averaged over all times that the door to the walk-in unit is open. Recommendations made by the evaluation team have been adopted to correct for errors observed in the ex ante savings calculation.

Table 3-56: Deemed Energy Savings and Demand Reductions for Strip Curtains

Туре	Pre-existing Curtains	Energy Savings ΔkWh/sqft	Demand Savings ΔkW/sqft
Supermarket - Cooler	Yes	37	0.0042
Supermarket - Cooler	No	108	0.0123
Supermarket - Cooler	Unknown	108	0.0123
Supermarket - Freezer	Yes	119	0.0136
Supermarket - Freezer	No	349	0.0398
Supermarket - Freezer	Unknown	349	0.0398
Convenience Store - Cooler	Yes	5	0.0006
Convenience Store - Cooler	No	20	0.0023
Convenience Store - Cooler	Unknown	11	0.0013
Convenience Store - Freezer	Yes	8	0.0009
Convenience Store - Freezer	No	27	0.0031
Convenience Store - Freezer	Unknown	17	0.0020
Restaurant - Cooler	Yes	8	0.0009
Restaurant - Cooler	No	30	0.0034
Restaurant - Cooler	Unknown	18	0.0020
Restaurant - Freezer	Yes	34	0.0039
Restaurant - Freezer	No	119	0.0136
Restaurant - Freezer	Unknown	81	0.0092
Refrigerated Warehouse	Yes	254	0.0290
Refrigerated Warehouse	No	729	0.0832
Refrigerated Warehouse	Unknown	287	0.0327

Table 3-57: Strip Curtain Calculation Assumptions for Supermarkets

Component	Туре	Va	Source	
		Cooler	Freezer	
η _{new}	Fixed	0.88	0.88	1
η _{old}	Fixed			1
with Pre-existing curtain		0.58	0.58	
with no Pre-existing curtain		0.00	0.00	
unknown		0.00	0.00	
C _D	Fixed	0.366	0.415	1
t _{open} (minutes/day)	Fixed	132	102	1
A (ft2)	Fixed	35	35	1
H (ft)	Fixed	7	7	1
Ti (°F)	Fixed	71	67	1 and 2
Tr (°F)	Fixed	37	5	1
ρί	Fixed	0.074	0.074	3
hi	Fixed	26.935	24.678	3
ρ _r	Fixed	0.079	0.085	3
h _r	Fixed	12.933	2.081	3
COP _{adj}	Fixed	3.07	1.95	1 and 2

Table 3-58: Strip Curtain Calculation Assumptions for Convenience Stores

Component	Туре	Va	Source	
		Cooler	Freezer	
η _{new}	Fixed	0.79	0.83	1
η_{old}	Fixed			1
with Pre-existing curtain		0.58	0.58	
with no Pre-existing curtain		0.00	0.00	
unknown		0.34	0.30	
C _D	Fixed	0.348	0.421	1
t _{open} (minutes/day)	Fixed	38	9	1
A (ft2)	Fixed	21	21	1
H (ft)	Fixed	7	7	1
Ti (°F)	Fixed	68	64	1 and 2
Tr (°F)	Fixed	39	5	1

SECTION 3: Commercial and Industrial Measures

Component	Туре	Va	Source	
		Cooler	Freezer	
ρί	Fixed	0.074	0.075	3
h _i	Fixed	25.227	23.087	3
ρ _r	Fixed	0.079	0.085	3
h _r	Fixed	13.750	2.081	3
COP _{adj}	Fixed	3.07	1.95	1 and 2

Table 3-59: Strip Curtain Calculation Assumptions for Restaurant

Component	Туре	Va	Source	
		Cooler	Freezer	
η _{new}	Fixed	0.80	0.81	1
η_{old}	Fixed			1
with Pre-existing curtain		0.58	0.58	
with no Pre-existing curtain		0.00	0.00	
unknown		0.33	0.26	
C _D	Fixed	0.383	0.442	1
t _{open} (minutes/day)	Fixed	45	38	1
A (ft2)	Fixed	21	21	1
H (ft)	Fixed	7	7	1
Ti (°F)	Fixed	70	67	1 and 2
Tr (°F)	Fixed	39	8	1
ρί	Fixed	0.074	0.074	3
h _i	Fixed	26.356	24.678	3
ρ _r	Fixed	0.079	0.085	3
h _r	Fixed	13.750	2.948	3
COP _{adj}	Fixed	3.07	1.95	1 and 2

Fixed

Fixed

Table 3-60: Strip Curtain Calculation Assumptions for Refrigerated Warehouse

Sources:

 h_{r}

COPadj

 http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-2010.pdf. The scale factors have been determined with tracer gas measurements on over 100 walk-in refrigeration units during the California Public Utility Commission's evaluation of the 2006-2008 CA investor owned utility energy efficiency programs. The door-open and close times, and temperatures of the infiltrating and refrigerated airs are taken from short-term monitoring of over 100 walk-in units.

9.462

1.91

3

1 and 2

- 2. For refrigerated warehouses, we used a bin calculation method to weight the outdoor temperature by the infiltration that occurs at that outdoor temperature. This tends to shift the average outdoor temperature during times of infiltration higher (e.g. from 54 °F year-round average to 64 °F). We also performed the same exercise to find out effective outdoor temperatures to use for adjustment of nominal refrigeration system COPs.
- 3. Density and enthalpy of infiltrating and refrigerated air are based on psychometric equations based on the dry bulb temperature and relative humidity. Relative humidity is estimated to be 55% for infiltrating air and 80% for refrigerated air. Dry bulb temperatures were determined through the evaluation cited in Source 1.

3.17.4 Measure Life

The measure life is estimated to be 4 years.

Sources:

- Commercial Facilities Contract Group 2006-2008 Direct Impact Evaluation, http://www.calmac.org/publications/ComFac Evaluation V1 Final Report 02-18-2010.pdf
- The Measure Life Report for Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007

3.17.5 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings according to store type. The strip curtains are not expected to be installed directly. As such, the program tracking / evaluation effort must capture the following key information:

- Fraction of strip curtains installed in each of the categories (e.g. freezer / cooler and store type)
- Fraction of customers that had pre-existing strip curtains

The rebate forms should track the above information. During the M&V process, interviews with site contacts should track this fraction, and savings should be adjusted accordingly.

This protocol shall apply to ground source, groundwater source, and water source heat pumps in commercial applications as further described below. This measure may apply to early replacement of an existing system, replacement on burnout, or installation of a new unit in a new or existing non-residential building for HVAC applications. The base case may employ a different system than the retrofit case.

3.18.1 Eligibility

In order for this characterization to apply, the efficient equipment is a high-efficiency groundwater source, water source, or ground source heat pump system that meets or exceeds the energy efficiency requirements of the International Energy Conservation Code (IECC) 2009, Table 503.2.3(2). The following retrofit scenarios are considered:

- · Ground source heat pumps for existing or new non-residential HVAC applications
- Groundwater source heat pumps for existing or new non-residential HVAC applications
- Water source heat pumps for existing or new non-residential HVAC applications

These retrofits reduce energy consumption by the improved thermodynamic efficiency of the refrigeration cycle of new equipment, by improving the efficiency of the cooling and heating cycle, and by lowering the condensing temperature when the system is in cooling mode and raising the evaporating temperature when the equipment is in heating mode as compared to the base case heating or cooling system. It is expected that the retrofit system will use a similar conditioned-air distribution system as the base case system.

<u>This protocol does not apply to Heat-heat pump systems coupled with a-non-heat pump systems</u> such as a-chillers, <u>rooftop AC units</u>, <u>boilers</u>, <u>or cooling towers-shall not be included in this-protocol</u>. Projects that use unique, combined systems such as <u>this-these</u> should use a site-specific M&V plan (SSMVP) to describe the particulars of the project and how savings are calculated.

Definition of Baseline Equipment

In order for this protocol to apply, the baseline equipment could be a standard-efficiency air source, water source, groundwater source, or ground source heat pump system, or an electric chiller and boiler system, or other chilled/hot water loop system. To calculate savings, the baseline system type is assumed to be an air source heat pump of similar size except for cases where the project is replacing a ground source, groundwater source, or water source heat pump; in those cases, the baseline system type is assumed to be a similar system at code.

Table 3-61: Water Source or Geothermal Heat Pump Baseline Assumptions

	Baseline Scenario	Baseline Efficiency Assumptions		
New Construction		Standard efficiency air source heat pump system		
Retrofit	Replacing any technology besides a ground source, groundwater source, or water source heat pump	Standard efficiency air source heat pump system		
	Replacing a ground source, groundwater source, or water source heat pump	Efficiency of the replaced geothermal system for early replacement only (if known), else code for a similar system		

3.18.2 Algorithms

There are two-three primary components that must be accounted for in the energy and demand calculations. The first component is the heat pump unit energy and power, and the second is the circulating pump in the ground/water loop system energy and power, and the third is the well pump in the ground/water loop system energy and power. For projects where the retrofit system is similar to the baseline system, such as a standard efficiency ground source system replaced with a high efficiency ground source system, the pump energy is expected to be the same for both conditions and does not need to be calculated. The kWh savings should be calculated using the basic equations below.

For air-cooled base case units with cooling capacities less than 65 kBtu/h:

ΔkWh	= $\Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{pump}$
ΔkWh_{cool}	= {($BtuH_{coo}/1000$) X (1/ $SEER_{base}$) X $EFLH_{coo}$ } - {($BtuH_{coo}/1000$) X (1/ EER_{ee}) X $EFLH_{coo}$ }
∆kWh _{heat}	$= \{ (BtuH_{heat} / 1000) \times (1/HSPF_{base}) \times EFLH_{heat} \} - \{ (BtuH_{heat} / 1000) \times (1/COP_{ee}) \times (1/3.412) \times EFLH_{heat} \}$
ΔkWh _{pump}	$= \{(HP_{basemotor} \times LF_{base} \times 0.746 \times (1/\eta_{basemotor}) \times (1/\eta_{basepump}) \times (HOURS_{basepump})\} - \{(HP_{eemotor} \times LF_{ee} \times 0.746 \times (1/\eta_{eemotor}) \times (1/\eta_{eepump}) \times (HOURS_{eepump})\}$
ΔkW_{peak}	$= \Delta k W_{peak\ cool} + \Delta k W_{peak\ pump}$
$\Delta kW_{peakcool}$	= {($BtuH_{coo}$ / 1000) X [(1/EER _{base})] X CF_{coo} } - {($BtuH_{coo}$ / 1000) X [(1/EER _{ee})] X CF_{coo} }
$\Delta kW_{peak\ pump}$	$= \{HP_{basemotor} \ X \ LF_{base} \ X \ 0.746 \ X \ (1/\eta_{basemotor}) \ X \ (1/\eta_{basepump}) \ X \\ CF_{pump} \} \ - \{HP_{eemotor} \ X \ LF_{ee} \ X \ 0.746 \ X \ (1/\eta_{eemotor}) \ X \ (1/\eta_{eepump})] \ X \\ CF_{pump} \}$

For air-cooled base case units with cooling capacities equal to or greater than 65 kBtu/h, and all other units:

 ΔkWh = $\Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{pump}$

 ΔkWh_{cool} = {($BtuH_{cool}$ / 1000) X (1/ EER_{base}) X $EFLH_{cool}$ } - {($BtuH_{cool}$ / 1000)

X (1/EER_{ee}) X EFLH_{cool}}

 ΔkWh_{heat} = {($BtuH_{heat}$ / 1000) X (1/COP_{base}) X (1/3.412) X $EFLH_{heat}$ } - {(

BtuH_{heat}/ 1000) X (1/COP_{ee}) X (1/3.412) X EFLH_{heat}

 ΔkWh_{pump} = {($HP_{basemotor} \times LF_{base} \times 0.746 \times (1/\eta_{basemotor}) \times (1/\eta_{basepump}) \times$

(HOURS_{basepump})} - {(HP_{eemotor} X LF_{ee} X 0.746 X (1/η_{eemotor}) *

 $(1/\eta_{eepump}) X (HOURS_{eepump})$

 $\Delta k W_{peak\ cool} + \Delta k W_{peak\ pump}$

[(1/EER_{ee})] X CF_{cool}}

 $\Delta kW_{peak\ pump}$ = { $HP_{base\ motor}\ X\ LF_{base}\ X\ 0.746\ X\ (1/\eta_{base\ motor})\ X\ (1/\eta_{base\ pump})\ X$

 CF_{pump} - { $HP_{eemotor} X LF_{ee} X 0.746 X (1/\eta_{eemotor}) X (1/\eta_{eepump})$] X

 CF_{pump}

3.18.3 Definition of Terms

 $BtuH_{cool}$ = Rated cooling capacity of the energy efficient unit in $BtuH_{cool}$

/hour

 $BtuH_{heat}$ = Rated heating capacity of the energy efficient unit in $BtuH_{heat}$

/hour

 $SEER_{base}$ = the cooling SEER of the baseline unit

 EER_{base} = the cooling EER of the baseline unit

HSPF_{base} = Heating Season Performance Factor of the Baseline Unit

COP_{base} = Coefficient of Performance of the Baseline Unit

EER_{ee} = the cooling EER of the new ground source, groundwater

source, or water source heat pumpground being installed

COP_{ee} = Coefficient of Performance of the new ground source,

groundwater source, or water source heat pump being installed

EFLH_{cool} = Cooling annual Equivalent Full Load Hours EFLH for

Commercial HVAC for different occupancies

EFLH_{heat} = Heating annual Equivalent Full Load Hours EFLH for

Commercial HVAC for different occupancies

3.412

0.746

CF _{cool}	= Demand Coincidence Factor (See Section 1.4) for Commercial HVAC
CF _{pump}	= Demand Coincidence Factor (See Section 1.4) for ground source loop pump
HP _{basemotor}	= Horsepower of base case ground loop pump motor
LF _{base}	= Load factor of the base case ground loop pump motor; Ratio of the peak running load to the nameplate rating of the pump motor.
$\eta_{ extit{basemotor}}$	= efficiency of base case ground loop pump motor
$\eta_{ extit{basepump}}$	= efficiency of base case ground loop pump at design point
HOURS _{basepump}	= Run hours of base case ground loop pump motor
HP _{eemotor}	= Horsepower of retrofit case ground loop pump motor
LF _{ee}	= Load factor of the retrofit case ground loop pump motor; Ratio of the peak running load to the nameplate rating of the pump motor.
$\eta_{eemotor}$	= efficiency of retrofit case ground loop pump motor
η_{eepump}	= efficiency of retrofit case ground loop pump at design point
$HOURS_{eepump}$	= Run hours of retrofit case ground loop pump motor

= conversion factor from horsepower to kW (kW/hp)

= kBtu per kWh

Component	Туре	Values	Sources	
BtuH _{cool}	Variable	Nameplate data (ARI or AHAM)	EDC Data Gathering	
BtuH _{heat}	Variable	Nameplate data (ARI or AHAM) Use BtuH _{∞ol} if the heating capacity is not known	EDC Data Gathering	
SEER _{base}	Fixed	Early Replacement: Nameplate data	EDC Data Gathering	
		New Construction or Replace on Burnout: Default values from Table 3-65	See Table 3-65	
EER _{base}	Fixed	Early Replacement: Nameplate data = SEER _{base} X (11.3/13) if EER not available 269	EDC Data Gathering	
		New Construction or Replace on Burnout: Default values from Table 3-65	See Table 3-65	
HSPF _{base}	Fixed	Early Replacement: Nameplate data	EDC Data Gathering	
		New Construction or Replace on Burnout: Default values from Table 3-65	See Table 3-65	
COP _{base}	Fixed	Early Replacement: Nameplate data	EDC Data Gathering	
		New Construction or Replace on Burnout: Default values from Table 3-65	See Table 3-65	
EER _{ee}	Variable	Nameplate data (ARI or AHAM) = SEER _{ee} X (11.3/13) if EER not available ²⁷⁰	EDC Data Gathering	
COPee	Variable	Nameplate data (ARI or AHAM)	EDC Data Gathering	
EFLH _{cool}	Variable	Based on Logging or Modeling	EDC Data Gathering	
		Default values from Table 3-21 and Table 3-22	See Table 3-21 and Table 3-22	
EFLH _{heat}	Variable	Based on Logging or Modeling	EDC Data Gathering	
		Default values from Table 3-21 and Table 3-22	See Table 3-21 and Table 3-22	
CF _{cool}	Fixed	Default = 0.80	3	
CF _{pump}	Fixed	If unit runs 24/7/365, default = 1.0; If unit runs only with heat pump unit compressor, default = 0.67	4	
HP _{basemotor}	Variable	Nameplate	EDC Data Gathering	
LF _{base}	Variable	Based on spot metering	EDC Data Gathering	
		Default 75%	1	
η _{basemotor}	Variable	Nameplate	EDC's Data Gathering	
		If unknown, assume the federal minimum efficiency requirements in Table 3-63	See Table 3-63	
η _{basepump}	Variable	Nameplate	EDC's Data Gathering	

 $[\]frac{269}{11.3/13}$ = Conversion factor from SEER to EER, based on average EER of a SEER 13 unit. $\frac{270}{11.3/13}$ = Conversion factor from SEER to EER, based on average EER of a SEER 13 unit.

Component	Туре	Values	Sources
		If unknown, assume program compliance efficiency in Table 3-64	See Table 3-64
HOURS _{basepump}	Fixed	Based on Logging or Modeling	EDC's Data Gathering
		EFLH _{cool} + EFLH _{heat} ²⁷¹ Default values from Table 3-21 and Table 3-22	2
HP _{eemotor}	Variable	Nameplate	EDC's Data Gathering
LF _{ee}	Variable	Based on spot metering	EDC Data Gathering
		Default 75%	1
η _{eemotor}	Variable	Nameplate	EDC's Data Gathering
		If unknown, assume the federal minimum efficiency requirements in Table 3-63	Table 3-63
η _{eepump}	Variable	Nameplate	EDC's Data Gathering
		If unknown, assume program compliance efficiency in Table 3-64	See Table 3-64
HOURS _{eepump}	Variable	Based on Logging or Modeling	EDC Data Gathering
		EFLH _{cool} + EFLH _{heat} ²⁷² Default values from Table 3-21 and Table 3-22	2

Sources:

- 1. California Public Utility Commission. Database for Energy Efficiency Resources 2005
- 2. Provides a conservative estimate in the absence of logging or modeling data.
- 3. Average based on coincidence factors from Ohio, New Jersey, Mid-Atlantic, Massachusetts, Connecticut, Illinois, New York, CEE and Minnesota. (74%, 67%, 81%, 94%, 82%, 72%, 100%, 70% and 76% respectively)
- 4. Engineering Estimate See definition in section 3.3.2 for specific algorithm to be used when performing spot metering analysis to determine alternate load factor.

 $^{^{271}}$ EFLH $_{cool}$ + EFLH $_{heat}$ represent the addition of cooling and heating annual equivalent full load hours for commercial HVAC for different occupancies, respectively.

²⁷² EFLH_{cool} + EFLH_{heat} represent the addition of cooling and heating annual equivalent full load hours for commercial HVAC for different occupancies, respectively.

Table 3-63: Federal Minimum Efficiency Requirements for Motors²⁷³

		Drip Proof # of Poles		Totally Enclosed Fan- Cooled (TEFC)		
Size HP	6	4	2	6	4	2
	S	peed (RPN	1)	S	peed (RPN	1)
	1200	1800	3600	1200	1800	3600
1	82.50%	85.50%	77.00%	82.50%	85.50%	77.00%
1.5	86.50%	86.50%	84.00%	87.50%	86.50%	84.00%
2	87.50%	86.50%	85.50%	88.50%	88.50% 86.50%	
3	88.50%	89.50%	85.50%	89.50%	89.50%	86.50%
5	89.50%	89.50%	86.50%	89.50%	89.50%	88.50%
7.5	90.20%	91.00%	88.50%	91.00%	91.70%	89.50%
10	91.70%	91.70%	89.50%	91.00%	91.70%	90.20%
15	91.70%	93.00%	90.20%	91.70%	92.40%	91.00%
20	92.40%	93.00%	91.00%	91.70%	93.00%	91.00%

Table 3-64: Ground/Water Loop Pump and Circulating Pump Efficiency²⁷⁴

HP	Minimum Pump Efficiency at Design Point (η _{pump})
1.5	65%
2	65%
3	67%
5	70%
7.5	73%
10	75%
15	77%
20	77%

 $^{^{\}rm 273}$ Table is based on NEMA premium efficiency motor standards. Source to the table can be found at: http://www.nema.org/stds/complimentary-docs/upload/MG1premium.pdf ²⁷⁴ Based on program requirements submitted during protocol review.

Table 3-65: Default Baseline Equipment Efficiencies

Equipment Type and Capacity	Cooling Baseline	Heating Baseline	
Air-Source Air Conditioners			
< 65,000 BtuH	13.0 SEER	N/A	
≥ 65,000 BtuH and <135,000 BtuH	11.2 EER	N/A	
≥ 135,000 BtuH and < 240,000 BtuH	11.0 EER	N/A	
≥ 240,000 BtuH and < 760,000 BtuH (IPLV for units with capacity-modulation only)	10.0 EER / 9.7 IPLV	N/A	
≥ 760,000 BtuH (IPLV for units with capacity-modulation only)	9.7 EER / 9.4 IPLV	N/A	
Water-Source and Evaporatively-Cooled Air Conditions	ers		
< 65,000 BtuH	12.1 EER	N/A	
≥ 65,000 BtuH and <135,000 BtuH	11.5 EER	N/A	
≥ 135,000 BtuH and < 240,000 BtuH	11.0 EER	N/A	
≥ 240,000 BtuH	11.5 EER	N/A	
Air-Source Heat Pumps			
< 65,000 BtuH	13 SEER	7.7 HSPF	
≥ 65,000 BtuH and <135,000 BtuH	11.0 EER	3.3 COP	
≥ 135,000 BtuH and < 240,000 BtuH	10.6 EER	3.2 COP	
≥ 240,000 BtuH (IPLV for units with capacity-modulation only)	9.5 EER / 9.2 IPLV	3.2 COP	
Water-Source Heat Pumps			
< 17,000 BtuH	11.2 EER	4.2 COP	
≥ 17,000 BtuH and ≤ 65,000 BtuH	12.0 EER	4.2 COP	
Ground Water Source Heat Pumps			
< 135,000 BtuH	16.2 EER	3.6 COP	
Ground Source Heat Pumps			
< 135,000 BtuH	13.4 EER	3.1 COP	
Packaged Terminal Systems (Replacements) ²⁷⁵			
PTAC (cooling)	10.9 - (0.213 x Cap / 1000) EER		
PTHP	10.8 - (0.213 x Cap / 1000) EER	2.9 - (0.026 x Cap / 1000) COP	
Packaged Terminal Systems (New Construction) ²⁷⁶			
PTAC (cooling)	12.5 - (0.213 x Cap / 1000) EER		
PTHP	12.3 - (0.213 x Cap / 1000) EER	3.2 - (0.026 x Cap / 1000) COP	

²⁷⁵ Cap represents the rated cooling capacity of the product in Btu/h. If the unit's capacity is less than 7,000 Btu/h, 7,000 Btu/h is used in the calculation. If the unit's capacity is greater than 15,000 Btu/h, 15,000 Btu/h is used in the calculation. ²⁷⁶ Cap represents the rated cooling capacity of the product in Btu/h. If the unit's capacity is less than 7,000 Btu/h, 7,000 Btu/h is used in the calculation. If the unit's capacity is greater than 15,000 Btu/h, 15,000 Btu/h is used in the calculation.

3.18.4 Measure Life

The expected measure life is assumed to be 15 years. 277

3.18.5 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

²⁷⁷ Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007.

3.19 Ductless Mini-Split Heat Pumps - Commercial < 5.4 tons

Measure Name	Ductless Heat Pumps
Target Sector	Commercial (non-residential) Establishments
Measure Unit	Ductless Heat Pumps
Unit Energy Savings	Variable based on efficiency of systems
Unit Peak Demand Reduction	Variable based on efficiency of systems
Measure Life	15

ENERGY STAR ductless "mini-split" heat pumps (DHP) utilize high efficiency SEER/EER and HSPF energy performance factors of 14.5/12 and 8.2, respectively, or greater. This technology typically converts an electric resistance heated space into a space heated/cooled with a single or multi-zonal ductless heat pump system.

3.19.1 Eligibility

This protocol documents the energy savings attributed to ENERGY STAR ductless mini-split heat pumps with energy-efficiency performance of 14.5/12 SEER/EER and 8.2 HSPF or greater with inverter technology. The baseline heating system could be an existing electric resistance, a lower-efficiency ductless heat pump system, a ducted heat pump, packaged terminal heat pump (PTHP), electric furnace, or a non-electric fuel-based system. The baseline cooling system could be a standard efficiency heat pump system, central air conditioning system, packaged terminal air conditioner (PTAC), or room air conditioner. The DHP could be a new device in an existing space, a new device in a new space, or could replace an existing heating/cooling device. The DHP systems could be installed as a single-zone system (one indoor unit, one outdoor unit) or a multi-zone system (multiple indoor units, one outdoor unit).

3.19.2 Algorithms

The savings depend on three main factors: baseline condition, usage, and the capacity of the indoor unit.

The algorithm is separated into two calculations: single zone and multi-zone ductless heat pumps. The savings algorithm is as follows:

Single Zone:

²⁷⁸ The measure energy efficiency performance is based on ENERGY STAR minimum specification requirements as specified in ARHI and CEE directory for ductless mini-split heat pumps. Ductless heat pumps fit these criteria and can easily exceed SEER levels of 16 or greater.

Multi-Zone:

 $\triangle kWh$ = $\triangle kWh_{cool} + \triangle kWh_{heat}$

 $\triangle kWh_{heat}$ = [CAPY_{heat} / 1000 X (1/COP_b - 1/COP_e) / 3.413 X EFLH_{heat} X

 $LF]_{ZONE1} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ EFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LF]_{ZONE2} + [CAPY_{heat} / 1000 \ X \ (1/COP_b - 1/COP_e) / 3.413 \ X \\ LFLH_{heat} \ X \ LFLH_{h$

3.413 X EFLH_{heat} X LF]_{ZONEn}

 ΔkWh_{cool} = [CAPY_{cool} / 1000 X (1/EER_b - 1/EER_e) X EFLH_{cool} X LF]_{ZONE1} +

$$\begin{split} & [CAPY_{cool} \, / \, 1000 \, X \, (1/EER_b - 1/EER_e \,) \, X \, EFLH_{cool} \, X \, LF]_{ZONE2} \, + \\ & [CAPY_{cool} \, / \, 1000 \, X \, (1/EER_b - 1/EER_e \,) \, X \, EFLH_{cool} \, X \, LF]_{ZONEn} \end{split}$$

 ΔkW_{peak} = $[CAPY_{cool}/1000 \times (1/EER_b - 1/EER_e) \times CF]_{ZONE1} + [CAPY_{cool}/1000 \times (1/EER_b - 1/EER_e) \times CF]_{ZONE1} + [CAPY_{cool}/1000 \times (1/EER_b - 1/EER_e) \times CF]_{ZONE1} + [CAPY_{cool}/1000 \times (1/EER_e) \times CF]_{ZONE1} + [CAPY_{cool}/1000 \times$

1000 X (1/EER_b - 1/EER_e) X CF]_{ZONE2} + [CAPY_{cool} / 1000 X

(1/EER_b - 1/EER_e) X CF]_{ZONEn}

3.19.3 Definition of Terms

CAPY_{cool} =The cooling capacity of the indoor unit, given in BTUH as

appropriate for the calculation. This protocol is limited to units <

65,000 BTUh (5.4 tons)

CAPY_{heat} =The heating capacity of the indoor unit, given in BTUH as

appropriate for the calculation.

EFLH_{cool} = Equivalent Full Load Hours for cooling

EFLH_{heat} = Equivalent Full Load Hours for heating

COP_b = Coefficient Of Performance heating efficiency of baseline unit

COP_e = Efficiency of the installed DHP (based on HSPF)

 EER_b = Energy Efficiency Ratio cooling efficiency of baseline unit

EER_e = Efficiency of the installed DHP

LF = Load factor

CF = Demand Coincidence Factor (See Section 1.4)

Component	Туре	Values	Sources
CAPY _{cool} CAPY _{heat}	Variable	Nameplate	AEPS Application; EDC Data Gathering
EFLH _{cool} EFLH _{heat}	Fixed	See <u>Table 3-67: Table 3-67:</u> Table 3-67 and <u>Table 3-68: Table 3-68:</u> <u>Table 3-68</u>	1
COPb	Fixed	Standard DHP: 2.26 Electric resistance: 1.00 ASHP: 2.26 PTHP: 3.2-(0.026xCAPY _{cool} /1000) Electric furnace: 0.95 For new space, no heat in an existing space, or non-electric heating in an existing space: use standard DHP: 2.26	2, 4,9
EERb	Fixed	DHP, ASHP, or central AC: 11.3 Room AC: 9.8 PTAC: 12.5-(0.213xCAPY _{cool} /1000) PTHP: 12.3-(0.213xCAPY _{cool} /1000) For new space or no cooling in an existing space: use Central AC: 11.3	3,4,5,7,9
COPe	Variable	= (HSPF _e / 3.413) Based on nameplate information. Should be at least ENERGY STAR.	AEPS Application; EDC Data Gathering
EER _e	Variable	Based on nameplate information. Should be at least ENERGY STAR. = SEER _e X (11.3/13) if EER not available	AEPS Application; EDC Data Gathering
CF	Fixed	70%	6
LF	Fixed	25%	8

Sources:

- 1. US Department of Energy. ENERGY STAR Calculator and Bin Analysis Models.
- 2. COP = HSPF/3.413. HSPF = 3.413 for electric resistance heating, HSPF = 7.7 for standard DHP. Electric furnace COP typically varies from 0.95 to 1.00 and thereby assumed a COP 0.95 (HSPF = 3.242).
- 3. Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.
- 4. Air-Conditioning, Heating, and Refrigeration Institute (AHRI); the directory of the available ductless mini-split heat pumps and corresponding efficiencies (lowest efficiency currently available). Accessed 8/16/2010.

- 6. Based on an analysis of six different utilities by Proctor Engineering. From Pennsylvania's Technical Reference Manual.
- 7. Average EER for SEER 13 unit. From Pennsylvania's Technical Reference Manual.
- 8. The load factor is used to account for inverter-based DHP units operating at partial loads. The value was chosen to align savings with what is seen in other jurisdictions: based on personal communication with Bruce Manclark, Delta-T, Inc. who is working with Northwest Energy Efficiency Alliance (NEEA) on the Northwest DHP Project http://www.nwductless.com/, and the results found in the "Ductless Mini Pilot Study" by KEMA, Inc., June 2009. The adjustment is required to account for partial load conditions and because the EFLH used are based on central ducted systems which may overestimate actual usage for baseboard systems.
- Package terminal air conditioners (PTAC) and package terminal heat pumps (PTHP)
 COP and EER minimum efficiency requirements is based on CAPY value. If the unit's
 capacity is less than 7,000 BTUH, use 7,000 BTUH in the calculation. If the unit's
 capacity is greater than 15,000 BTUH, use 15,000 BTUH in the calculation.

Table 3-67: Cooling EFLH for Pennsylvania Cities^{279, 280, 281}

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
Arena/Auditorium/Convention Center	602	332	640	508	454	711	428
College: Classes/Administrative	690	380	733	582	520	815	490
Convenience Stores	1,216	671	1,293	1,026	917	1,436	864
Dining: Bar Lounge/Leisure	912	503	969	769	688	1,077	648
Dining: Cafeteria / Fast Food	1,227	677	1,304	1,035	925	1,449	872
Dining: Restaurants	912	503	969	769	688	1,077	648
Gymnasium/Performing Arts Theatre	690	380	733	582	520	815	490
Hospitals/Health care	1,396	770	1,483	1,177	1,052	1,648	992
Industrial: 1 Shift/Light Manufacturing	727	401	773	613	548	859	517
Industrial: 2 Shift	988	545	1,050	833	745	1,166	702
Industrial: 3 Shift	1,251	690	1,330	1,055	944	1,478	889
Lodging: Hotels/Motels/Dormitories	756	418	805	638	571	894	538
Lodging: Residential	757	418	805	638	571	894	538
Multi-Family (Common Areas)	1,395	769	1,482	1,176	1,052	1,647	991
Museum/Library	851	469	905	718	642	1,005	605
Nursing Homes	1,141	630	1,213	963	861	1,348	811
Office: General/Retail	851	469	905	718	642	1,005	605
Office: Medical/Banks	851	469	905	718	642	1,005	605
Parking Garages & Lots	938	517	997	791	707	1,107	666
Penitentiary	1,091	602	1,160	920	823	1,289	775
Police/Fire Stations (24 Hr)	1,395	769	1,482	1,176	1,052	1,647	991
Post Office/Town Hall/Court House	851	469	905	718	642	1,005	605
Religious Buildings/Church	602	332	640	508	454	711	428
Retail	894	493	950	754	674	1,055	635
Schools/University	634	350	674	535	478	749	451
Warehouses (Not Refrigerated)	692	382	735	583	522	817	492
Warehouses (Refrigerated)	692	382	735	583	522	817	492
Waste Water Treatment Plant	1,251	690	1,330	1,055	944	1,478	889

US Department of Energy. Energy Star Calculator and Bin Analysis Models
 A zip code mapping table is located in Appendix F. This table should be used to identify the reference Pennsylvania city for all zip codes in Pennsylvania
²⁸¹ US Department of Energy. Energy Star Calculator and Bin Analysis Models

Table 3-68: Heating EFLH for Pennsylvania Cities^{282, 283, 284}

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
Arena/Auditorium/Convention Center	1,719	2,002	1,636	1,642	1,726	1,606	1,747
College: Classes/Administrative	1,559	1,815	1,484	1,489	1,565	1,457	1,584
Convenience Stores	603	3,148	2,573	2,582	2,715	2,526	2,747
Dining: Bar Lounge/Leisure	1,156	1,346	1,100	1,104	1,161	1,080	1,175
Dining: Cafeteria / Fast Food	582	2,066	1,689	1,695	1,782	1,658	1,803
Dining: Restaurants	1,156	1,346	1,100	1,104	1,161	1,080	1,175
Gymnasium/Performing Arts Theatre	1,559	1,815	1,484	1,489	1,565	1,457	1,584
Hospitals/Health care	276	321	263	264	277	2,526	280
Industrial: 1 Shift/Light Manufacturing	1,491	1,737	1,420	1,425	1,498	1,394	1,516
Industrial: 2 Shift	1,017	1,184	968	972	1,022	951	1,034
Industrial: 3 Shift	538	626	512	513	540	502	546
Lodging: Hotels/Motels/Dormitories	1,438	1,675	1,369	1,374	1,444	1,344	1,462
Lodging: Residential	1,438	1,675	1,369	1,374	1,444	1,344	1,462
Multi-Family (Common Areas)	277	3,148	2,573	2,582	2,715	2,526	2,747
Museum/Library	1,266	1,474	1,205	1,209	1,271	1,183	1,286
Nursing Homes	738	3,148	2,573	2,582	2,715	2,526	2,747
Office: General/Retail	1,266	884	722	725	762	709	771
Office: Medical/Banks	1,266	1,474	1,205	1,209	1,271	1,183	1,286
Parking Garages & Lots	1,110	1,292	1,056	1,060	1,114	1,037	1,128
Penitentiary	829	3,148	2,573	2,582	2,715	2,526	2,747
Police/Fire Stations (24 Hr)	277	3,148	2,573	2,582	2,715	2,526	2,747
Post Office/Town Hall/Court House	1,266	1,474	1,205	1,209	1,271	1,183	1,286
Religious Buildings/Church	1,718	2,001	1,635	1,641	1,725	1,605	1,746
Retail	1,188	1,383	1,130	1,135	1,193	1,110	1,207
Schools/University	1,661	984	805	808	849	790	859
Warehouses (Not Refrigerated)	538	567	463	465	489	455	495
Warehouses (Refrigerated)	1,555	1,810	1,480	1,485	1,561	1,453	1,580
Waste Water Treatment Plant	1,265	1,473	1,204	1,208	1,270	1,182	1,285

 ²⁸² US Department of Energy. Energy Star Calculator and Bin Analysis Models
 ²⁸³ A zip code mapping table is located in Appendix F. This table should be used to identify the reference Pennsylvania city for all zip codes in Pennsylvania

284 US Department of Energy. Energy Star Calculator and Bin Analysis Models

3.19.4 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources, a heat pump's lifespan is 15 years. 285

3.19.5 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

²⁸⁵ DEER values, updated October 10, 2008. Various sources range from 12 to 20 years, DEER represented a reasonable mid-range. http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

3.20 ENERGY STAR Electric Steam Cooker

This measure applies to the installation of electric ENERGY STAR steam cookers as either a new item or replacement for an existing unit. Gas steam cookers are not eligible. The steam cookers must meet minimum ENERGY STAR efficiency requirements. A qualifying steam cooker must meet a minimum cooking efficiency of 50 percent and meet idle energy rates specified by pan capacity.

The baseline equipment is a unit with efficiency specifications that do not meet the minimum ENERGY STAR efficiency requirements.

3.20.1 Algorithms

The savings depend on three main factors: pounds of food steam cooked per day, pan capacity, and cooking efficiency.

 ΔkWh = $\Delta kWh_{cooking}$ + ΔkWh_{idle}

 $\triangle kWh_{cooking}$ = Ibsfood X EnergyToFood X (1/Eff_b - 1/Eff_{ee})

 ΔkWh_{idle} = [(Power_{idle-b} X (1- %HOURS_{consteam}) + %HOURS_{consteam} X

CAPY_b X Qty_{pans} X (EnergyToFood/Eff_b) X (HOURS_{op} -

Ibsfood/(CAPY_b X Qty_{pans}) - HOURS_{pre})] -

[(Power_{idle-ee} X (1- %HOURS_{consteam}) + %HOURS_{consteam} X CAPY_{ee} X Qty_{pans} X (EnergyToFood/Eff_{ee}) X (HOURS_{consteam})

Ibsfood/(CAPY_{ee} X Qty_{pans}) - HOURS_{pre})]

 ΔkW_{peak} = $(\Delta kWh / EFLH) X CF$

3.20.2 Definition of Terms

lbsfood = Pounds of food cooked per day in the steam cooker

EnergyToFood = ASTM energy to food ratio; energy (kilowatt-hours) required

per pound of food during cooking

Eff_{ee} = Cooking energy efficiency of the new unit

Eff_b = Cooking energy efficiency of the baseline unit

 $Power_{idle-b}$ = Idle power of the baseline unit in kilowatts

Power_{idle-ee} = Idle power of the new unit in kilowatts

%HOURS_{consteam} = Percentage of idle time per day the steamer is in continuous

steam mode instead of timed cooking. The power used in this

mode is the same as the power in cooking mode.

 $HOURS_{op}$ = Total operating hours per day

HOURS_{pre} = Daily hours spent preheating the steam cooker

 $CAPY_b$ = Production capacity per pan of the baseline unit in pounds per

hour of the baseline unit

= Production capacity per pan of the new unit in pounds per hour CAPY_{ee}

= Quantity of pans in the unit Qty_{pans}

EFLH = Equivalent full load hours per year

CF = Demand Coincidence Factor (See Section 1.4)

1000 = Conversion from watts to kilowatts

Table 3-69: Steam Cooker - Values and References

Component	Туре	Values	Sources
Lbsfood	Variable	Nameplate	EDC Data Gathering
		Default values in <u>Table 3-70Table</u> 3-70Table 3-70	Table 3-70Table 3-70Table 3-70
EnergyToFood	Fixed	0.0308 kWh/pound	1
Effee	Variable	Nameplate	EDC Data Gathering
		Default values in <u>Table 3-70Table</u> <u>3-70</u> Table 3-70	Table 3-70Table 3-70Table 3-70
Eff _b	Fixed	See <u>Table 3-70Table 3-70Table 3-70</u>	Table 3-70Table 3-70Table 3-70
Power _{idle-b}	Variable	See <u>Table 3-70Table 3-70Table 3-70</u>	Table 3-70Table 3-70Table 3-70
Power _{idle-ee}	Variable	Nameplate	EDC Data Gathering
		Default values in <u>Table 3-70Table</u> <u>3-70</u> Table 3-70	<u>Table 3-70Table 3-70</u> Table 3-70
HOURS _{op}	Variable	Nameplate	EDC Data Gathering
		12 hours	1
HOURS _{pre}	Fixed	0.25	1
%HOURS _{consteam}	Fixed	40%	1
CAPY _b	Fixed	See <u>Table 3-70Table 3-70</u> Table 3-70	<u>Table 3-70Table 3-70</u> Table 3-70
CAPYee	Fixed	See <u>Table 3-70Table 3-70Table 3-70</u>	Table 3-70Table 3-70Table 3-70
Qty _{pans}	Variable	Nameplate	EDC Data Gathering
EFLH	Fixed	4380	2
CF	Fixed	0.84	4, 5

Sources:

- 1. US Department of Energy. ENERGY STAR Calculator.
- 2. Food Service Technology Center (FSTC), based on an assumption that the restaurant is open 12 hours a day, 365 days a year.
- 3. FSTC (2002). Commercial Cooking Appliance Technology Assessment. Chapter 8: Steamers.
- 4. State of Ohio Energy Efficiency Technical Reference Manual cites a CF = 0.84 as adopted from the Efficiency Vermont TRM. Assumes CF is similar to that for general commercial industrial lighting equipment.
- 5. RLW Analytics. Coincidence Factor Study Residential and Commercial Industrial Lighting Measures. Spring 2007.

Table 3-70: Default Values for Electric Steam Cookers by Number of Pans²⁸⁶

# of Pans	Parameter	Baseline Model	Efficient Model	Savings
3	Power _{idle} (kW) ²⁸⁷	1.000	0.27	
	CAPY (lb/h)	23.3	16.7	
	Ibsfood	100	100	
3	Eff ²⁸⁸	30%	59%	
	ΔkWh			2,813
	Δ k W_{peak}			0.54
4	Power _{idle} (kW)	1.325	0.30	
	CAPY (lb/h)	21.8	16.8	
	Ibsfood	128	128	
	Eff	30%	57%	
	ΔkWh			3,902
	Δ k W_{peak}			0.75

²⁸⁶ Values for ASTM parameters for baseline and efficient conditions (unless otherwise noted) were determined by FSTC according to ASTM F1484, the Standard Test Method for Performance of Steam Cookers. Pounds of Food Cooked per Day based on the default value for a 3 pan steam cooker (100 lbs from FSTC) and scaled up based on the assumption that steam cookers with a greater number of pans cook larger quantities of food per day.

²⁸⁷ Efficient values calculated from a list of ENERGY STAR qualified products.

²⁸⁸ Ibid.

# of Pans	Parameter	Baseline Model	Efficient Model	Savings
_	Power _{idle} (kW)	1.675	0.31	
	CAPY (lb/h)	20.6	16.6	
	Ibsfood	160	160	
5	Eff	30%	70%	
	ΔkWh			5,134
	Δ k W_{peak}			0.98
6	Power _{idle} (kW)	2.000	0.31	
	CAPY (lb/h)	20.0	16.7	
	Ibsfood	192	192	
	Eff	30%	65%	
	ΔkWh			6,311
	Δ kW _{peak}			1.21

3.20.3 Measure Life

According to Food Service Technology Center (FSTC) data provided to ENERGY STAR, the lifetime of a steam cooker is 12 years 289 .

3.20.4 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

 $^{^{289}\} http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup\&pgw_code=COC$

3.21 Refrigeration - Night Covers for Display Cases

Measure Name	Night Covers for Display Cases
Target Sector	Commercial Refrigeration
Measure Unit	Display Cases
Unit Energy Savings	Variable
Unit Peak Demand Reduction	Variable
Measure Life	5 years

This measure is the installation of night covers on existing open-type refrigerated display cases, where covers are deployed during the facility unoccupied hours in order to reduce refrigeration energy consumption.. These types of display cases can be found in small and medium to large size grocery stores. The air temperature inside low-temperature display cases is below $0^{\circ}F^{290}$ and between $0^{\circ}F$ to $30^{\circ}F$ for medium-temperature and between $35^{\circ}F$ to $55^{\circ}F$ for high-temperature display cases 291 . The main benefit of using night covers on open display cases is a reduction of infiltration and radiation cooling loads. It is recommended that these covers have small, perforated holes to decrease moisture buildup.

3.21.1 Algorithms

The energy savings and demand reduction are obtained through the following calculations²⁹².

$$\Delta kWh$$
 = $W \times SF \times HOU$

There are no demand savings for this measure because the covers will not be in use during the peak period²⁹³.

3.21.2 Definition of Terms

The variables in the above equation are defined below:

W = Width of the opening that the night covers protect (ft)

SF = Savings factor based on the temperature of the case (kW/ft)

HOU = Annual hours that the night covers are in use

 $^{{\}color{red} {\underline{^{290}}} \, \underline{^{http://www.smud.org/en/business/rebates/Pages/express-refrigeration.aspx}}}$

²⁹¹ Massachusetts 2011 Technical Reference Manual

²⁹² "Effects Of The Low Emissivity Shields On Performance And Power Use Of A Refrigerated Display Case" Southern California Edison Refrigeration Technology and Test Center Energy Efficiency Division August 8,1997.

 $^{^{293}}$ Assumed that the continuous covers are deployed at night (usually 1:00 a.m. - 5:00 a.m.); therefore no demand savings is usually reported for this measure.

Table 3-71: Night Covers Calculations Assumptions

Component	Туре	Value	Source
W	Variable	EDC's Data Gathering	EDC's Data Gathering
SF	Fixed	Default values in <u>Table 3-72: Savings FactorsTable</u> <u>3-72: Savings Factors</u> Table 3-72: Savings Factors	1
HOU	Variable	EDC's Data Gathering Default: 2190 ²⁹⁴	EDC's Data Gathering

Sources:

1. CL&P Program Savings Documentation for 2011 Program Year (2010). Factors based on Southern California Edison (1997). Effects of the Low Emissive Shields on Performance and Power Use of a Refrigerated Display Case.

Table 3-72: Savings Factors

Cooler Case Temperature	Savings Factor
Low Temperature (-35 F to -5 F)	0.03 kW/ft
Medium Temperature (0 F to 30 F)	0.02 kW/ft
High Temperature (35 F to 55 F)	0.01 kW/ft

The demand and energy savings assumptions are based on analysis performed by Southern California Edison (SCE). SCE conducted this test at its Refrigeration Technology and Test Center (RTTC). The RTTC's sophisticated instrumentation and data acquisition system provided detailed tracking of the refrigeration system's critical temperature and pressure points during the test period. These readings were then utilized to quantify various heat transfer and power related parameters within the refrigeration cycle. The results of SCE's test focused on three typical scenarios found mostly in supermarkets.

Measure Life

The expected measure life is 5 years 295,296.

Hours should be determined on a case-by-case basis. Default value of 2190 hours is estimated assuming that the annual operating hours of the refrigerated case is 8,760 hours as per Ohio 2010 Technical Reference Manual and night covers must be applied for a period of at least six hours in a 24-hour period.

California Public Utilities Commission, December 16, 2008.

296 The Measure Life Report for Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, Inc., June 2007

3.22 Office Equipment – Network Power Management Enabling

Over the last three years, a number of strategies have evolved to save energy in desktop computers. One class of products uses software implemented at the network level for desktop computers that manipulates the internal power settings of the central processing unit (CPU) and of the monitor. These power settings are an integral part of a computer's operating system (most commonly, Microsoft Windows) including "on", "standby", "sleep", and "off" modes and can be set by users from their individual desktops.

Most individual computer users are unfamiliar with these energy saving settings, and hence, settings are normally set by an IT administrator to minimize user complaints related to bringing the computer back from standby, sleep, or off modes. However, these strategies use a large amount of energy during times when the computer is not in active use. Studies have shown that energy consumed during non-use periods is large, and is often the majority of total energy consumed.

Qualifying software must control desktop computer and monitor power settings within a network from a central location.

3.22.1 Deemed Savings

The energy savings per unit found in various studies specific to the Verdiem Surveyor software varied from 33.8 kWh/year to 330 kWh/year, with an average savings of about 200 kWh/year. This includes the power savings from the PC as well as the monitor. Deemed savings are based on a research study conducted by Regional Technical Forum which involves actual field measurements of the Verdiem Surveyor product. Deemed savings are based on actual field measurements from Duquesne's service territory of the Verdiem Surveyor product. The study reports deemed energy and demand savings for three different building types (schools, large office and small office) in combination with different HVAC systems types (electric heat, gas heat, and heat pumps). A simple average is reported for Pennsylvania.

Demand reduction was closely monitored in the study by Southern California Edison over a period of one month. This included 120 PC's operating in nine different departments within SCE's network. The study found that statistically the average PC did use less power during peak periods by about 20W. The use of individual PC's could vary dramatically, but with a sample size of about 12 units or greater the pattern for demand reduction was very clear.

Table 3-73: Network Power Controls, Per Unit Summary Table

Measure Name	Unit	Gross Peak kW Reduction per Unit	Gross Peak kWh Reduction per Unit	Effective Useful Life	IMC per unit (\$)	Net to Gross Ratio
Network PC Plug Load Power Management Software	One copy of licensed software installed on a PC workstation	0.0078 ²⁹⁷ 0.020	135 ²⁹⁸ 148	5	20	0.8

3.22.2 Effective Useful Life

The EUL for this technology is estimated to be five (5) years. While DEER lists the EUL of electro-mechanical plug load sensors at ten years, this product is subject to the cyclical nature of the PC software and hardware industry, so a more conservative number is appropriate. This is the same value used in the SDG&E program.

Sources:

- Regional Technical Forum (RTF) as part of the Northwest Power & Conservation Council,
 Deemed Measures List. Network Computer Power Management, v3.0.
 - Office Plug Load Field Monitoring Report, Laura Moorefield et al, Ecos Consulting, Dec, 2008.
 - b. PSE PC Power Management Results, Cadmus Group, Feb, 2011.
 - c. Non-Residential Network Computer Power Management, Avista, Feb, 2011.
 - d. After-hours Power Status of Office Equipment and Inventory of Miscellaneous
 Plug-Load Equipment, LBNL, Jan 2004.
 - e. Ecos Commercial Field Research Report, 2008.
- 4-2. Dimetrosky, S., Luedtke, J. S., & Seiden, K. (2005). Surveyor Network Energy Manager: Market Progress Evaluation Report, No. 2 (Northwest Energy Efficiency Alliance report #E05-136). Portland, OR: Quantec LLC. http://www.nwalliance.org/research/reports/136.pdf
- 2.3. Dimetrosky, S., Steiner, J., & Vellinga, N. (2006). San Diego Gas & Electric 2004-2005 Local Energy Savers Program Evaluation Report (Study ID: SDG0212). Portland, OR: Quantec LLC.
 - http://www.calmac.org/publications/SDGE ESP EMV Report 073106 Final.pdf
- 3.4. Greenberg, D. (2004). *Network Power Management Software: Saving Energy by Remote Control* (E source report No. ER-04-15). Boulder, CO: Platts Research & Consulting.

²⁹⁷ http://www.nwcouncil.org/energy/rtf/measures/measure.asp?id=95&decisionid=117

4.5. Roth, K., Larocque, G., & Kleinman, J. (2004). Energy Consumption by Office and Telecommunications Equipment in Commercial Buildings Volume II: Energy Savings Potential (U.S. DOE contract No. DE-AM26-99FT40465). Cambridge, MA: TIAX LLC. http://www.eere.energy.gov/buildings/info/documents/pdfs/office_telecom-vol2_final.pdf

Southern California Edison. (May 31, 2005). Surveyor Consumption Report (contact: Leonel Campoy).

3.23 Refrigeration - Auto Closers

Measure Name	Auto Closers
Target Sector	Commercial Refrigeration
Measure Unit	Walk-in Coolers and Freezers
Unit Energy Savings	Fixed
Unit Peak Demand Reduction	Fixed
Measure Life	8 years

The auto-closer should be applied to the main insulated opaque door(s) of a walk-in cooler or freezer. Auto-closers on freezers and coolers can reduce the amount of time that doors are open, thereby reducing infiltration and refrigeration loads. These measures are for retrofit of doors not previously equipped with auto-closers, and assume the doors have strip curtains.

3.23.1 Eligibility²⁹⁹

This protocol documents the energy savings attributed to installation of auto closers in walk-in coolers and freezers. The auto-closer must be able to firmly close the door when it is within one inch of full closure. The walk-in door perimeter must be ≥16 ft.

3.23.2 Algorithms

Auto-Closers are treated in Database for Energy Efficient Resources (DEER) as weather-sensitive; therefore the recommended deemed savings values indicated below are derived from the DEER runs in California climate zones most closely associated to the climate zones of the main seven Pennsylvania cities, The association between California climate zones and the Pennsylvania cities is based on Cooling Degree Days (CDDs). Savings estimates for each measure are averaged across six building vintages for each climate-zone for building type 9, Grocery Stores.

Main Cooler Doors

 ΔkWh = ΔkWh_{cooler} = ΔkW_{cooler}

Main Freezer Doors

 ΔkWh = $\Delta kWh_{freezer}$ = $\Delta kW_{freezer}$

3.23.3 Definition of Terms

 Δ kWh_{cooler}, = Annual kWh savings for main cooler doors

²⁹⁹ http://energysmartonline.org/documents/EnergySmart_BPA_T&Cs.pdf

 ΔkW_{cooler} = Summer peak kW savings for main cooler doors

 Δ kWh_{freezer}, = Annual kWh savings for main freezer doors

 $\Delta kW_{freezer}$ = Summer peak kW savings for main freezer doors

Table 3-74: Refrigeration Auto Closers Calculations Assumptions

	Associated		Value				
Reference City	California Climate	Cod	oler	Free	zer	Source	
	Zone	kWh _{cooler}	kW _{cooler}	kWh _{freezer}	kW _{freezer}		
Allentown	4	961 kWh	0.135 kW	2319 kWh	0.327 kW	1	
Williamstown	4	961 kWh	0.135 kW	2319 kWh	0.327 kW	1	
Pittsburgh	4	961 kWh	0.135 kW	2319 kWh	0.327 kW	1	
Harrisburg	8	981 kWh	0.108 kW	2348 kWh	0.272 kW	1	
Philadelphia	13	1017 kWh	0.143 kW	2457 kWh	0.426 kW	1	
Scranton	16	924 kWh	0.146 kW	2329 kWh	0.296 kW	1	
Erie	6	952 kWh	0.116 kW	2329 kWh	0.191 kW	1	

Sources:

 2005 DEER weather sensitive commercial data; DEER Database, http://www.deeresources.com/

3.23.4 Measure Life

The expected measure life is 8 years 300.

 $^{^{\}rm 300}$ http://energysmartonline.org/documents/EnergySmart_BPA_T&Cs.pdf

3.24 Refrigeration - Door Gaskets for Walk-in Coolers and Freezers

Technical Reference Manual

The following protocol for the measurement of energy and demand savings is applicable to commercial refrigeration and applies to the replacement of worn-out gaskets with new betterfitting gaskets. Applicable gaskets include those located on the doors of walk-in coolers and freezers.

Tight fitting gaskets inhibit infiltration of warm, moist air into the cold refrigerated space, thereby reducing the cooling load. Aside from the direct reduction in cooling load, the associated decrease in moisture entering the refrigerated space also helps prevent frost on the cooling coils. Frost build-up adversely impacts the coil's ,heat transfer effectiveness, reduces air passage (lowering heat transfer efficiency), and increases energy use during the defrost cycle. Therefore, replacing defective door gaskets. reduces compressor run time and improves the overall effectiveness of heat removal from a refrigerated cabinet.

3.24.1 Eligibility

This protocol applies to the main doors of both low temperature ("freezer" - below 32°F) and medium temperature ("cooler" - above 32°F) walk-ins.

3.24.2 **Algorithms**

The energy savings and demand reduction are obtained through the following calculations:

 ΔkWh $= \Delta kWh/ft X L$

 $= \Delta kW/ft \times L$ ΔkW_{peak}

3.24.3 **Definition of Terms**

ΔkWh/ft = Annual energy savings per linear foot of gasket

ΔkW/ft = Demand savings per linear foot of gasket

L = Total gasket length in linear feet

Table 3-75: Door Gasket Assumptions

Component	Туре	Value	Source
ΔkWh/ft	Variable	From Table 3-76 to	1
		<u>Table 3-80</u>	
		Table 3-80	
		Table 3-80	
ΔkW/ft	Variable	From Table 3-76 to	1
		<u>Table 3-80</u>	
		Table 3-80	
		Table 3-80	
L	Variable	As Measured	EDC Data Gathering

Sources:

 Southern California Edison Company, Design & Engineering Services, Work Paper WPSCNRRN0001, 2006 – 2008 Program Planning Cycle.

The deemed savings values below are weather sensitive, therefore the values for each reference city are taken from the associated California climate zones listed in the Southern California Edison work paper. The Commercial Facilities Contract Group 2006-2008 Direct Impact Evaluation³⁰¹ prepared for the California Public Utilities Commission, which mainly focuses on refrigerated display cases versus walk-in coolers, have shown low realization rates and net-togross ratios compared to the SCE work papers, mostly attributable to the effectiveness of baseline door gaskets being much higher than assumed. Due to the relatively small contribution of savings toward EDC portfolios as a whole and lack of Pennsylvania specific data, the ex ante savings based on the SCE work paper will be used until further research is conducted.

Table 3-76: Door Gasket Savings per Linear Foot (CZ 4 Allentown, Pittsburgh, Williamstown)

Building Type	Coo	lers	Freezers	
Building Type	ΔkW/ft	ΔkWh/ft	ΔkW/ft	ΔkW/ft
Restaurant	0.000886	18	0.001871	63
Small Grocery Store/ Convenience Store	0.000658	15	0.001620	64
Medium/Large Grocery Store/ Supermarkets	0.000647	15	0.001593	91

Table 3-77: Door Gasket Savings per Linear Foot (CZ 8 Harrisburg)

Building Type	Coo	lers	Freezers	
Building Type	ΔkW/ft	ΔkWh/ft	ΔkW/ft	ΔkWh/ft
Restaurant	0.000908	19	0.001928	65
Small Grocery Store/ Convenience Store	0.000675	15	0.001669	67
Medium/Large Grocery Store/ Supermarkets	0.000663	15	0.001642	95

Table 3-78: Door Gasket Savings per Linear Foot (CZ 13 Philadelphia)

Duilding Type	Coo	lers	Freezers	
Building Type	ΔkW/ft	ΔkWh/ft	ΔkW/ft	ΔkWh/ft
Restaurant	0.001228	23	0.002729	80
Small Grocery Store/ Convenience Store	0.000915	18	0.002368	81
Medium/Large Grocery Store/ Supermarkets	0.000899	18	0.002336	115

 $^{^{301}\} http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-2010.pdf$

Table 3-79: Door Gasket Savings per Linear Foot (CZ 16 Scranton)

Building Type	Coo	lers	Freezers	
Building Type	ΔkW/ft	ΔkWh/ft	ΔkW/ft	ΔkWh/ft
Restaurant	0.000908	17	0.001928	58
Small Grocery Store/ Convenience Store	0.000675	14	0.001669	60
Medium/Large Grocery Store/ Supermarkets	0.000663	14	0.001642	85

Table 3-80: Door Gasket Savings per Linear Foot (CZ 6 Erie)

Duilding Type	Coo	lers	Freezers	
Building Type	ΔkW/ft	ΔkWh/ft	ΔkW/ft	ΔkWh/ft
Restaurant	0.000803	17	0.001659	59
Small Grocery Store/ Convenience Store	0.000596	14	0.001435	61
Medium/Large Grocery Store/ Supermarkets	0.000586	14	0.001410	86

3.24.4 Measure Life

The expected measure life is 4 years 302.

³⁰² http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-2010.pdf

3.25 Refrigeration – Suction Pipes Insulation

Measure Name	Refrigeration Suction Pipes Insulation
Target Sector	Commercial Refrigeration
Measure Unit	Refrigeration
Unit Energy Savings	Fixed
Unit Peak Demand Reduction	Fixed
Measure Life	11 years

This measure applies to installation of insulation on existing bare suction lines (the larger diameter lines that run from the evaporator to the compressor) that are located outside of the refrigerated space. Insulation impedes heat transfer from the ambient air to the suction lines, thereby reducing undesirable system superheat. This decreases the load on the compressor, resulting in decreased compressor operating hours, and energy savings.

3.25.1 Eligibility

This protocol documents the energy savings attributed to insulation of bare refrigeration suction pipes. The following are the eligibility requirements³⁰³:

- Must insulate bare refrigeration suction lines of 1-5/8 inches in diameter or less on existing equipment only
- Medium temperature lines require 3/4 inch of flexible, closed-cell, nitrite rubber or an equivalent insulation
- Low temperature lines require 1-inch of insulation that is in compliance with the specifications above
- Insulation exposed to the outdoors must be protected from the weather (i.e. jacketed with a medium-gauge aluminum jacket)

3.25.2 Algorithms

The demand and energy savings assumptions are based on analysis performed by Southern California Edison (SCE)³⁰⁴. Measure savings per linear foot of insulation installed on bare suction lines in Grocery Stores is provided in <u>Table 3-81: Insulate Bare Refrigeration Suction Pipes Calculations Assumptions Table 3-81: Insulate Bare Refrigeration Suction Pipes Calculations Assumptions Table 3-81: Insulate Bare Refrigeration Suction Pipes Calculations Assumptions Table 3-82 below lists the "deemed" savings for the associated California Climate zones and their respective Pennsylvania city.</u>

ΔkWh	$= \Delta kWh/ft \times L$
202	

http://www.energysmartgrocer.org/pdfs/PGE/2010 2012%20External%20Equipment%20SpecificationTandCs%20v3.pdf 304 Work papers developed by SCE filed with the CA PUC in support of its 2006 – 2008 energy efficiency program plans

- Rev Date: June 20122013 (DRAFT)

 $= \Delta kW/ft \times L$

3.25.3 **Definition of Terms**

The variables in the above equation are defined below:

 $\Delta kWh/ft$ = Annual energy savings per linear foot of insulation

 $\Delta kW/ft$ = Demand savings per linear foot of insulation

L = Total insulation length in linear feet

Table 3-81: Insulate Bare Refrigeration Suction Pipes Calculations Assumptions

Component Type		Value	Source
ΔkW/ft	Variable	Table 3-82	1
ΔkWh/ft	Variable	Table 3-82	1
L	Variable	As Measured	EDC Data Gathering

Table 3-82: Insulate Bare Refrigeration Suction Pipes Savings per Linear Foot305

	Associated California	Medium- TemperatureCoolers		Low- TemperatureFreezers	
City	Climate Zone	ΔkW/ft	ΔkWh/ft	ΔkW/ft	ΔkWh/ft
Allentown	4	0.001507	8.0	0.0023	13.0
Williamstown	4	0.001507	8.0	0.0023	13.0
Pittsburgh	4	0.001507	8.0	0.0023	13.0
Philadelphia	13	0.002059	11.0	0.00233	13.4
Erie	6	0.001345	7.3	0.002175	12.4
Harrisburg	8	0.001548	8.4	0.00233	13.4
Scranton	16	0.001548	7.5	0.00233	12.0

Sources:

1. Southern California Edison Company, "Insulation of Bare Refrigeration Suction Lines", Work Paper WPSCNRRN0003.1

3.25.4 **Measure Life**

The expected measure life is 11 years 306,307.

³⁰⁵ A zip code mapping table is located in Appendix F. This table should be used to identify the reference Pennsylvania city for all zip codes in Pennsylvania

³⁰⁶ California Measurement Advisory Committee Public Workpapers on PY 2001 Energy Efficiency Programs. September 2000. Appendix F, P.14

3.26 Refrigeration – Evaporator Fan Controllers

This measure is for the installation of evaporator fan controls³⁰⁸ in medium-temperature walk-in coolers with no pre-existing controls. Evaporator fans run constantly to provide cooling when the compressor is running, and to provide air circulation when the compressor is not running. The equations specified in the Algorithms section are for fans that are turned off and/or cycled.A fan controller saves energy by reducing fan usage, by reducing the refrigeration load resulting from the heat given off by the fan and by reducing compressor energy resulting from the electronic temperature control. This protocol documents the energy savings attributed to evaporator fan controls.

3.26.1 Eligibility

This protocol documents the energy savings attributed to installation of evaporator fan controls in medium-temperature walk-in coolers and low temperature walk-in freezers.

3.26.2 Algorithms³⁰⁹

 ΔkWh = ΔkWh_{Fan} + ΔkWh_{Heat} + $\Delta kWh_{Control}$

 ΔkWh_{Fan} = $kW_{Fan} \times 8760 \times \%Off$

 ΔkWh_{Heat} = $\Delta kWh_{Fan} \times 0.28 \times Eff_{RS}$

 $\Delta kWh_{Control} = [kW_{CP} \times Hours_{CP} + kW_{Fan} \times 8760 \times (1 - \%Off)] \times 5\%$

 $\Delta kW = \Delta kWh / 8760$

Determine kW_{Fan} and kW_{CP} variables using any of the following methods:

1. Calculate using the nameplate horsepower and load factor.

 $\underline{kW_{Fan} \text{ or } kW_{CP}} = [(HP \times LF \times 0.746) / \eta]$

2. Calculate using the nameplate amperage and voltage and a power factor.

 $\underline{kW_{Fan} \text{ or } kW_{CP}} = [V X A X PF \text{ motor } X LF]$

3. Measure the input kW fan using a power meter reading true RMS power.

3.26.3 Definition of Terms

 ΔkWh_{Fan} = Energy savings due to evaporator being shut off

³⁰⁷ DEER database, EUL/RUL for insulation bare suction pipes

³⁰⁸ An evaporator fan controller is a device or system that lowers airflow across an evaporator in medium-temperature walk-in coolers when there is no refrigerant flow through the evaporator (i.e., when the compressor is in an off-cycle).

³⁰⁹ The assumptions and algorithms used in this section are specific to NRM products and are taken from the Massachusetts Statewide Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, Version 1.0 http://www.ma-eeac.org/docs/MA%20TRM_2011%20PLAN%20VERSION.PDF

ΔkWh_{Heat}	= Heat energy savings due to reduced heat from evaporator fans
$\Delta kWh_{Control}$	= Control energy savings due to electronic controls on compressor and evaporator
kW _{Fan}	= Power demand of evaporator fan calculated <u>from any of the</u> <u>methods described above</u> from equipment nameplate data and <u>estimated power factor/adjustment. See Table 3-83: Evaporator</u> <u>Fan Controller Calculations Assumptions for power factor value.</u>
<u>kW_{CP}</u>	= Power demand of compressor motor and condenser fan
<u></u>	calculated from any of the methods described above
%Off	= Percent of annual hours that the evaporator is turned off
HP	= Rated horsepower of the motor
n _{eemotor}	= efficiency of the motor
<u>LF</u>	= Load factor of motor
<u>Voltage</u>	= Voltage of the motor
<u>Amperage</u>	= Rated amperage of the motor
<u>PF</u>	= Power factor of the motor
<u>Eff_{RS}</u>	= Efficiency of typical refrigeration system
Hours _{CP}	= Equivalent annual full load hours of compressor operation
0.28	= Conversion of kW to tons: 3,413 Btuh/kW divided by 12,000 Btuh/ton
⊑ # _{RS}	- Efficiency of typical refrigeration system
kW _{CP}	= Total power demand of compressor motor and condenser fan-
UP	calculated from nameplate data and estimated power factor. See
	Table 3-83: Evaporator Fan Controller Calculations Assumptions
	for power factor value.
Hours _{CP}	= Equivalent annual full load hours of compressor operation ³¹⁰
5%	= Reduced run-time of compressor and evaporator due to electronic controls ³¹¹

Conservative value based on 15 years of NRM field observations and experience
 Conservative estimate supported by less conservative values given by several utility-sponsored 3rd party studies including: Select Energy (2004). Analysis of Cooler Control Energy Conservation Measures. Prepared for NSTAR.

= conversion factor from horsepower to kW (kW/hp)

Table 3-83: Evaporator Fan Controller Calculations Assumptions

Component	Туре	Value	Source
Power Factor: kW _{Fan} PF	Fixed	DefaultFan motor: 0.556	1
		Compressor motor: 0.9	
%Off	Fixed	Default: 46%	2
Eff _{RS}	Fixed	Default: 1.6 kW/ton	3
Power Factor: kW _{GP}	Fixed	Default: 0.85	4
Hours _{CP}	Variable	5,700 ³¹² EDC Data Gathering	EDC Data Gathering5
k₩ _{Fan}	Variable	EDC Data Gathering ³¹³	EDC Data Gathering
Motor HP	<u>Variable</u>	EDC Data Gathering	EDC Data Gathering
Motor Eff	<u>Variable</u>	EDC Data Gathering	EDC Data Gathering
<u>LF</u>	<u>Fixed</u>	0.9	Section 3.10
Voltage	<u>Variable</u>	EDC Data Gathering	EDC Data Gathering
<u>Amperage</u>	<u>Variable</u>	EDC Data Gathering	EDC Data Gathering

Sources:

- 1. Conservative value based on 15 years of NRM field observations and experience,
- Select Energy (2004). Analysis of Cooler Control Energy Conservation Measures. Prepared for NSTAR.
- 3. Estimated average refrigeration efficiency for small business customers, Massachusetts Technical Reference Manual
- 4. This value is an estimate by NRM based on hundreds of downloads of hours of use data-from the electronic controller Southern California Edison. Non-Residential Express 2003 Refrigeration Work Paper. Pg. 27
- 5. PSC of Wisconsin, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, p. 4-103 to 4-106.

 ³¹² EFLH was determined by multiplying annual available operation hours of 8,760 by overall duty cycle factors. Duty cycle is a function of compressor capacity, defrost and weather factor. The units are assumed to be operating 24/7, 8760 hrs/yr.
 343 Evaporator fan power, in kilowatts (kW), is determined by multiplying the values for Voltage and Amperage from

^{***-}Evaporator fan power, in kilowatts (kW), is determined by multiplying the values for Voltage and Amperage from nameplate data with the power factor listed in Table 1-1.

 $[\]underline{\text{http://www.touchstoneenergy.com/efficiency/bea/Documents/EvaporatorFanControllers.pdf}}$

³¹⁴ Energy & Resource Solutions (2005). Measure Life Study. Prepared for The Massachusetts Joint Utilities; Table 1-1.

3.27 ENERGY STAR Clothes Washer

Measure Name	Clothes Washer
Target Sector	Multifamily Common Area Laundry
Measure Unit	Per Washing Machine
Unit Energy Savings	See <u>Table 3-85</u> : <u>Deemed Savings for ENERGY STAR Clothes</u> <u>WasherTable 3-85</u> Table 3-85: <u>Deemed Savings for ENERGY</u> <u>STAR Clothes Washer</u>
Unit Peak Demand Reduction	See <u>Table 3-85</u> : <u>Deemed Savings for ENERGY STAR Clothes</u> <u>WasherTable 3-85</u> Table 3-85: <u>Deemed Savings for ENERGY-STAR Clothes Washer</u>
Measure Life	10 years

This protocol discusses the calculation methodology and the assumptions regarding baseline equipment, efficient equipment, and usage patterns used to estimate annual energy savings expected from the replacement of a standard clothes washer with an ENERGY STAR clothes washer with a minimum Modified Energy Factor (MEF) of \geq 2.0 (ft³ ×cycle)/ (kWh). The Federal efficiency standard is \geq 1.26 (ft³ ×cycle)/ (kWh)³¹⁵.

3.27.1 Eligibility

This protocol documents the energy savings attributed to efficient clothes washers meeting ENERGY STAR or CEE Tier 1 standards or better in small commercial applications. This protocol is limited to clothes washers in laundry rooms in multifamily establishments.

3.27.2 Algorithms

The energy savings and demand reduction are obtained through the following calculations:

$$\Delta kWh$$
 = $\Delta kWh_{load} \times Loads$
= $kWh \ Savings \times UF$
$$\Delta kWh$$
 = $\frac{Loads \times Vol}{MEF_B} - \frac{Loads \times Vol}{MEF_P}$
$$\Delta kW_{peak}$$
 = $kWh \ Savings \times UF$

The utilization factor, (UF) is equal to the average energy usage between noon and 8PM on summer weekdays to the annual energy usage. The utilization rate is derived as follows:

- 1. Obtain normalized, hourly load shape data for residential clothes washing
- 2. Smooth the load shape by replacing each hourly value with a 5-hour average centered about that hour. This step is necessary because the best available load shape data

³¹⁵ Consortium for Energy Efficiency: http://www.cee1.org/resid/seha/rwsh/reswash_specs.pdf

- exhibits erratic behavior commonly associated with metering of small samples. The smoothing out effectively simulates diversification.
- 3. Take the UF to be the average of all load shape elements corresponding to the hours between noon and 8PM on weekdays from June to September.

The value is the June-September, weekday noon to 8PM average of the normalized load shape values associated with residential clothes washers in PG&E service territory (northern CA). Although Northern CA is far from PA, the load shape data is the best available at the time and the temporal dependence washer usage is not expected to have a strong geographical dependency.

Figure 3-1: Utilization factor for a sample week in July

Figure 3-1 shows the utilization factor for each hour of a sample week in July. Because the load shape data derived from monitoring of in-house clothes washers is being imputed to multifamily laundry room washers (which have higher utilization rates – 950 loads/year compared to 392), it is important to check that the resulting minutes of usage per hour is significantly smaller than 60. If the minutes of usage per hour approach 60, then it should be assumed that the load shape for multi-family laundry room clothes washers must be different than the load shape for in-house clothes washers. The maximum utilization per hour is 36.2 minutes.

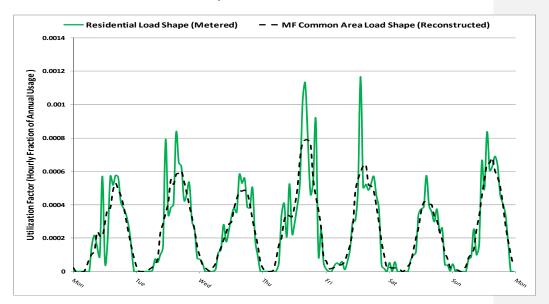


Figure 3-1: Utilization factor for a sample week in July³¹⁶

³¹⁶ The solid green profile is derived from a normalized load shape based on metering of residential in-unit dryers. The dashed black profile is a smoothed version of the green profile and represents the utilization factors for common laundry facilities in multifamily establishments

3.27.3 Definition of Terms

The parameters in the above equation are listed in <u>Table 3-84</u>: <u>Commercial Clothes Washer Calculation Assumptions Table 3-84</u>: <u>Commercial Clothes Washer Calculation Assumptions</u> below.

Table 3-84: Commercial Clothes Washer Calculation Assumptions

Component	Туре	Values	Source
MEF _B , Base Federal Standard Modified Energy Factor	Fixed	1.26 ³¹⁷	1
MEF _P , Modified Energy Factor of Qualified Washing Machine (Name Plate)	Variable	Nameplate Tier 1: ≥2.00 Tier 2: ≥2.20 Tier 3: ≥2.40	1
ΔkWh _{load} ³¹⁸ , Difference in Electricity Consumption per Load of Laundry between Baseline and Efficient Equipment	Fixed	Table 3-85	2
Loads, Number of Loads per Year	Fixed	950 loads	2
UF, Utilization Factor	Fixed	0.0002382	3

Sources:

- Consortium for Energy Efficiency:
 http://www.cee1.org/resid/seha/rwsh/reswash_specs.pdf
- ENERGY STAR calculator for Commercial Clothes Washers, Multi-Family Laundry Association, July 2011
- 3. Annual hourly load shapes taken from Energy Environment and Economics (E3), Resviewer2: http://www.ethree.com/cpuc_cee_tools.html. The average normalized usage for the hours noon to 8 PM, Monday through Friday, June 1 to September 30 is 0.000243

3.27.4 Deemed Savings

The deemed savings for the installation of a washing machine with a MEF of 2.0 or higher, is dependent on the energy source for washer. The table below shows savings for washing machines for different combinations of water heater and dryer types. The values are based on the difference between the average of all qualified models and the average of all unqualified models.

³¹⁷ Standard clothes washer that is DOE 2007 compliant

³¹⁸ Dependent on energy source for washer

Table 3-85: Deemed Savings for ENERGY STAR Clothes Washer

Fuel Source	Cycles/ Year	∆kWh _{load}	Energy Savings (kWh)	Demand Reduction (kW)
Electric Hot Water Heater, Electric Dryer	950	0.57	541	0.129
Electric Hot Water Heater, Gas Dryer	950	0.36	342	0.081
Electric Hot Water Heater, No Dryer	950	0.36	342	0.081
Gas Hot Water Heater, Gas Dryer	950	0.06	57	0.013
Gas Hot Water Heater, Electric Dryer	950	0.25	237	0.056
Gas Hot Water Heater, No Dryer	950	0.06	57	0.013

3.27.5 Measure Life

The Database for Energy Efficiency Resources estimates the measure life at 10 years³¹⁹.

3.27.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

³¹⁹ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values"

3.28 Electric Resistance Water Heaters

Measure Name	Efficient Electric Water Heaters
Target Sector	Small Commercial Establishments
Measure Unit	Water Heater
Unit Energy Savings	Varies
Unit Peak Demand Reduction	Varies
Measure Life	15 years

Efficient electric resistance water heaters use resistive heating coils to heat the water. Premium efficiency models primarily generally use increased tank insulation to achieve energy factors of 0.93 to 0.96.

3.28.1 Eligibility

This protocol documents the energy savings attributed to efficient electric resistance water heaters with a minimum energy factor of 0.93 compared to a baseline electric resistance water heater with an energy factor of 0.904. However, other energy factors are accommodated with the partially deemed scheme. The target sector includes domestic hot water applications in small commercial settings such as small retail establishments, small offices, small clinics, and small lodging establishments such as small motels.

3.28.2 Algorithms

The energy savings calculation utilizes average performance data for available premium and standard electric resistance water heaters and typical hot water usages. The energy savings are obtained through the following formula:

$$\angle AkWh = \frac{\left\{ \left(\frac{1}{EF_{Base}} - \frac{1}{EF_{Proposed}} \right) \times Load \times (Thot - Tcold) \right\}}{3413 \frac{Btu}{kWh}}$$

For efficient resistive water heaters, demand savings result primarily from reduction in standby losses. The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage.

$$\Delta kW_{peak}$$
 = EnergyToDemandFactor × Energy Savings × ResistiveDiscountFactor

The Energy to Demand Factor is defined below:

$$EnergyToDemandFactor = \frac{Average\ Usage_{Summer\ WD\ Noon-8}}{Annual\ Energy\ Usage}$$

Loads

The annual loads are taken from data from the DEER database ³²⁰. The DEER database has data for gas energy usage for the domestic hot water end use for various small commercial buildings. The loads are averaged over all 16 climate zones and all six vintage types in the DEER database. Finally, the loads are converted to average annual gallons of use using the algorithm below. The loads are summarized in Table 3-86 Typical water heating loads. Table 3-86 below.

$$HW (Gallons) = \frac{Load \times EF_{NG, Base} \times 1000 \frac{Btu}{kBtu} \times Typical SF}{8.3 \frac{lb}{gal} \times (Thot - Tcold) \times 1000 SF}$$

Table 3-86: Typical water heating loads.

Building Type	Typical Square Footage	Average Annual Load In kBTU	Average Annual Use, Gallons
Motel	30,000	2,963	97,870
Small Office	10,000	2,214	24,377
Small Retail	7,000	1,451	11,183

Energy to Demand Factor

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from usage profile data collected for commercial water heaters in CA³²¹. The usage profiles are shown in Figure 3-2. To ensure that the load shape data derived from observations in CA can be applied to PA, we compared the annual energy usage to peak demand factors for two disparate climate zones in CA. The results, shown in Figure 3-3, indicate that the ratio of peak demand to annual energy usage is not strongly influenced by climate. Also, though the actual usage profiles may be different, the average usage between noon and 8 PM on summer weekdays is quite similar for al building types. The close level of agreement between disparate climate zones and building types suggest that the results will carry over to Pennsylvania³²².

³²⁰ http://www.deeresources.com/deer0911planning/downloads/DEER2008-CommercialResultsReview-NonUpdatedMeasures.exe

³²¹ ibio

³²² One reason for the close agreement is that the factor is a ratio of the energy usage to peak demand for the same location. Even though the energy usages may vary significantly in different climate zones, the hot water usage patterns may be driven by underlying practices that carry over well from state to state (e.g. dishwashing after lunch or dinner in restaurants).

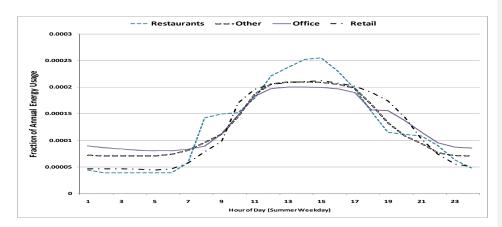


Figure 3-2: Load shapes for hot water in four commercial building types

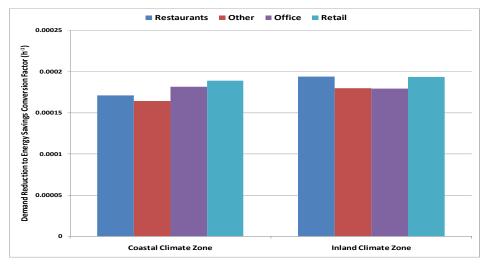


Figure 3-3: Energy to demand factors for four commercial building types

3.28.3 Definition of Terms

The parameters in the above equation are listed in Table 3-87.

Table 3-87: Electric Resistance Water Heater Calculation Assumptions

Component	Туре	Values	Source
EF _{base} , Energy Factor of baseline water heater	Fixed	0.904	1
EF _{proposed} , Energy Factor of proposed efficient water heater	Variable	≥0.93	Program Design
Load, Average annual Load in kBTU	Fixed	Varies	DEER Database
T _{hot} , Temperature of hot water	Fixed	120 °F	2
T _{cold} , Temperature of cold water supply	Fixed	55 °F	3
EnergyToDemandFactor	Fixed	0.0001916	4
HW, Average annual gallons of Use	Fixed	Varies	See Table 3-86
EF _{NG, base} , Energy Factor of baseline gas water heater	Fixed	0.594	5
ResistiveDiscountFactor	Fixed	1.0	6

Sources:

- Federal Standards are 0.97 -0.00132 x Rated Storage in Gallons. For a 50-gallon tank this is approximately 0.90. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE–2006–BT-STD–0129, p. 30
- Many states have plumbing codes that limit shower and bathtub water temperature to 120 °F.
- 3. Mid-Atlantic TRM, footnote #24
- The load shapes can be accessed online: http://www.ethree.com/CPUC/PG&ENonResViewer.zip
- Federal Standards are 0.67 -0.0019 x Rated Storage in Gallons. For a 40-gallon tank this is 0.594. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE-2006-BT-STD-0129, p. 30
- 6. Engineering Estimate. No discount factor is needed because this measure is already an electric resisitance water heater system.

3.28.4 Deemed Savings

The deemed savings for the installation of efficient electric water heaters in various applications are listed below.

Table 3-88: Energy Savings and Demand Reductions

Building Type	Average Annual Use, Gallons	EF	Energy Savings (kWh)	Demand Reduction (kW)
Motel	97,870	0.95	829	0.16
Small Office	24,377	0.95	207	0.04
Small Retail	11,183	0.95	95	0.02

3.28.5 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources, an electric water heater's lifespan is 15 years 323 .

3.28.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

³²³ DEER values, updated October 10, 2008 http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

3.29 Heat Pump Water Heaters

Measure Name	Heat Pump Water Heaters
Target Sector	Commercial Establishments
Measure Unit	Water Heater
Unit Energy Savings	Varies
Unit Peak Demand Reduction	Varies
Measure Life	10 years

Heat Pump Water Heaters take heat from the surrounding air and transfer it to the water in the tank, unlike conventional electrical water heaters which use resistive heating coils to heat the water.

3.29.1 Eligibility

This protocol documents the energy savings attributed to heat pump water heaters with Energy Factors of 2.2. However, other energy factors are accommodated with the partially deemed scheme. The target sector includes domestic hot water applications in small commercial settings such as small retail establishments, small offices, small clinics, and small lodging establishments such as small motels. The measure described here involves a direct retrofit of a resistive electric water heater with a heat pump water heater. It does not cover systems where the heat pump is a pre-heater or is combined with other water heating sources. More complicated installations can be treated as custom projects.

3.29.2 Algorithms

The energy savings calculation utilizes average performance data for available heat pump and standard electric resistance water heaters and typical hot water usages. The energy savings are obtained through the following formula:

$$\angle AkWh = \frac{\left\{ \left(\frac{1}{EF_{Base}} - \left(\frac{1}{EF_{Proposed}} \times \frac{1}{F_{Adjust}} \right) \right) \times Load \times (Thot - Tcold) \right\}}{3413 \frac{Btu}{kWh}}$$

For heat pump water heaters, demand savings result primarily from a reduced connected load. The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage.

$$\triangle kW_{peak}$$
 = EnergyToDemandFactor × Energy Savings × ResistiveDiscountFactor

The Energy to Demand Factor is defined below:

$$= \frac{Average\ Usage_{Summer\ WD\ Noon-8}}{Annual\ Energy\ Usage}$$

Loads

The annual loads are taken from data from the DEER database ³²⁴. The DEER database has data for gas energy usage for the domestic hot water end use for various small commercial buildings. The loads are averaged over all 16 climate zones and all six vintage types in the DEER database. Finally, the loads are converted to average annual gallons of use using the algorithm below. The loads are summarized in <u>Table 3-89: Typical water heating loadsTable 3-89Table 3-89</u> below.

$$HW (Gallons) = \frac{Load \times EF_{NG, Base} \times 1000 \frac{Btu}{kBtu} \times Typical SF}{8.3 \frac{lb}{gal} \times (Thot - Tcold) \times 1000 SF}$$

Table 3-89: Typical water heating loads

Building Type	Typical Square Footage	Average Annual Load In kBTU	Average Annual Use, Gallons
Motel	30,000	2,963	97,870
Small Office	10,000	2,214	24,377
Small Retail	7,000	1,451	11,183

Energy to Demand Factor

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from usage profile data collected for commercial water heaters in CA³²⁵. The usage profiles are shown in Figure 3-4. To ensure that the load shape data derived from observations in CA can be applied to PA, we compared the annual energy usage to peak demand factors for two disparate climate zones in CA. The results, shown in Figure 3-5, indicate that the ratio of peak demand to annual energy usage is not strongly influenced by climate. Also, though the actual usage profiles may be different, the average usage between noon and 8 PM on summer weekdays is quite similar for al building types. The close level of agreement between disparate climate zones and building types suggest that the results will carry over to Pennsylvania³²⁶.

³²⁴ http://www.deeresources.com/deer0911planning/downloads/DEER2008-CommercialResultsReview-NonUpdatedMeasures.exe

³²⁵ ibio

³²⁶ One reason for the close agreement is that the factor is a ratio of the energy usage to peak demand for the same location. Even though the energy usages may vary significantly in different climate zones, the hot water usage patterns may be driven by underlying practices that carry over well from state to state (e.g. dishwashing after lunch or dinner in restaurants).

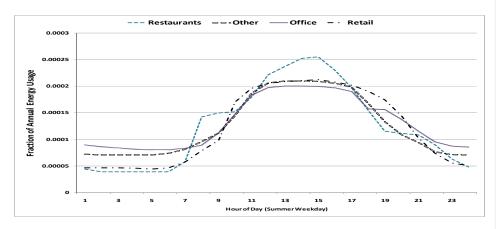


Figure 3-4: Load shapes for hot water in four commercial building types

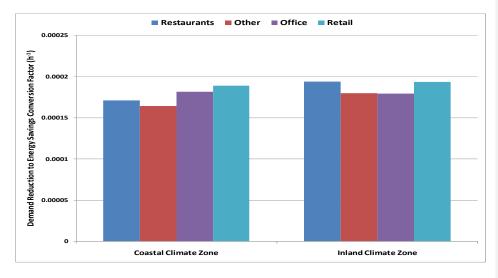


Figure 3-5: Energy to demand factors for four commercial building types

Resistive Heating Discount Factor

The resistive heating discount factor is an attempt to account for possible increased reliance on back-up resistive heating elements during peak usage conditions. Although a brief literature review failed to find data that may lead to a quantitative adjustment, two elements of the demand reduction calculation are worth considering.

- The hot water temperature in this calculation is somewhat conservative at 120 °F.
- The peak usage window is eight hours long.

- In conditioned space, heat pump capacity is somewhat higher in the peak summer window
- In unconditioned space, heat pump capacity is dramatically higher in the peak summer window.

Under these operating conditions, one would expect a properly sized heat pump water heater with adequate storage capacity to require minimal reliance on resistive heating elements. A resistive heating discount factor of 0.9, corresponding to a 10% reduction in COP during peak times, is therefore taken as a conservative estimation for this adjustment.

Heat Pump COP Adjustment Factor

The Energy Factors are determined from a DOE testing procedure that is carried out at 56 °F wetbulb temperature. However, the average wetbulb temperature in PA is closer to 45 °F³²⁷, while the average wetbulb temperature in conditioned typically ranges from 50 °F to 80 °F. The heat pump performance is temperature dependent. Figure 3-6 below shows relative coefficient of performance (COP) compared to the COP at rated conditions³²⁸. According to the plotted profile, the following adjustments are recommended.

Table 3-90: COP Adjustment Factors

Heat Pump Placement	Typical WB Temperature °F	COP Adjustment Factor
Unconditioned Space	44	0.80
Conditioned Space	63	1.09
Kitchen	80	1.30

 $^{^{327}}$ Based on TMY2 weather files from DOE2.com for Erie, Harrisburg, Pittsburgh, Wilkes-Barre, And Williamsport, the average annual wetbulb temperature is 45 ± 1.3 °F. The wetbulb temperature in garages or attics, where the heat pumps are likely to be installed, are likely to be two or three degrees higher, but for simplicity, 45 °F is assumed to be the annual average wetbulb temperature.

³²⁸ The performance curve is adapted from Table 1 in http://wescorhvac.com/HPWH%20design%20details.htm#Single-stage%20HPWHs. The performance curve depends on other factors, such as hot water set point. Our adjustment factor of 0.84 is a first order approximation based on the information available in literature.

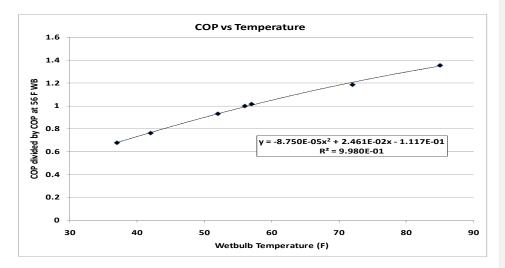


Figure 3-6: Dependence of COP on outdoor wetbulb temperature.

3.29.3 Definition of Terms

The parameters in the above equation are listed in Table 3-91.

Table 3-91: Electric Resistance Water Heater Calculation Assumptions

Component	Туре	Values	Source
EF _{base} , Energy Factor of baseline water heater	Fixed	0.904	1
EF _{proposed} , Energy Factor of proposed efficient water heater	Variable	Nameplate	EDC Data Gathering
Load, Average annual Load in kBTU	Fixed	Varies	5
T _{hot} , Temperature of hot water	Fixed	120 °F	2
T _{cold} , Temperature of cold water supply	Fixed	55 °F	3
EnergyToDemandFactor	Fixed	0.0001916	4
F _{Adjust} , COP Adjustment factor	Fixed	0.80 if outdoor 1.09 if indoor 1.30 if in kitchen	4
ResistiveDiscountFactor	Fixed	0.90	6
HW, Average annual gallons of Use	Fixed	Varies	See Table 3-89
EF _{NG, base} , Energy Factor of baseline gas water heater	Fixed	0.594	7

Sources:

- Federal Standards are 0.97 -0.00132 x Rated Storage in Gallons. For a 50-gallon tank this is approximately 0.90. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE–2006–BT-STD–0129, p. 30
- 2. Many states have plumbing codes that limit shower and bathtub water temperature to 120 $^{\circ}\text{F}$.
- 3. Mid-Atlantic TRM, footnote #24
- 4. The load shapes can be accessed online: http://www.ethree.com/CPUC/PG&ENonResViewer.zip
- 5. DEER Database
- 6. Engineering Estimate
- Federal Standards are 0.67 -0.0019 x Rated Storage in Gallons. For a 40-gallon tank this is 0.594. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE-2006-BT-STD-0129, p. 30

3.29.4 Deemed Savings

The deemed savings for the installation of heat pump electric water heaters in various applications are listed below.

Table 3-92: Energy Savings and Demand Reductions

Building Type	Location Installed	Average Annual Use, Gallons	EF	COP Adjustment Factor	Energy Savings (kWh)	Demand Reduction (kW)
Motel	Unconditioned Space	97,870	2.2	0.80	8,324	1.44
Motel	Conditioned Space	97,870	2.2	1.09	10,662	1.84
Motel	Kitchen	97,870	2.2	1.30	11,704	2.02
Small Office	Unconditioned Space	24,377	2.2	0.80	2,073	0.36
Small Office	Conditioned Space	24,377	2.2	1.09	2,656	0.46
Small Office	Kitchen	24,377	2.2	1.30	2,915	0.50
Small Retail	Unconditioned Space	11,183	2.2	0.80	951	0.16
Small Retail	Conditioned Space	11,183	2.2	1.09	1,218	0.21
Small Retail	Kitchen	11,183	2.2	1.30	1,338	0.23

3.29.5 Measure Life

According to an October 2008 report for the CA Database for Energy Efficiency Resources, an electric water heater's lifespan is 10 years 329 .

3.29.6 Evaluation Protocols

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls

³²⁹ DEER values, updated October 10, 2008.

3.30 **LED Channel Signage**

Channel signage refers to the illuminated signs found inside and outside shopping malls to identify store names. Typically these signs are constructed from sheet metal sides forming the shape of letters and a translucent plastic lens. Luminance is most commonly provided by single or double strip neon lamps, powered by neon sign transformers. Retrofit kits are available to upgrade existing signage from neon to LED light sources, substantially reducing the electrical power and energy required for equivalent sign luminance. Red, green, blue, yellow, and white LEDs are available, but at higher cost than red. Red is the most common color and the most costeffective to retrofit, currently comprising approximately 80% of the market.

3.30.1 **Eligibility Requirements**

This measure must replace incandescent-lighted or neon-lighted channel letter signs. Retrofit kits or complete replacement LED signs are eligible. Replacement signs cannot use more than $20\%^{330}$ of the actual input power of the sign that is replaced. Measure the length of the sign as follows:

- Measure the length of each individual letter at the centerline. Do not measure the distance between letters.
- Add up the measurements of each individual letter to get the length of the entire sign being replaced.

3.30.2 **Algorithms**

41/14/

The savings are calculated using the equations below and the assumptions in Table 1-1.

ΔKVV	= KVV _{base} - KVV _{ee}
kW _{base}	$= kW_N/ft \times \frac{Q \times NL}{L}$
kW _{ee}	$= kW_{LED}/ft \times \frac{Q \times NL}{L}$
∆kW _{peak}	= ∆kW X CF X (1+IF demand)
∆kWh	= $[kW_{base} X(1+IF energy) X EFLH] - [kW_{ee} X(1+IF energy) X EFLH X (1 - SVG)]$

3.30.3

		EFLH X (1 – SVG)]
}	Definition of Terms	
	Δ kWh	= Annual energy savings (kWh/ft)
	ΔkW	= Change in connected load from baseline (pre-retrofit) to installed (post-retrofit) lighting level (kW/ft of sign)
	kW _N /ft	= kW of the baseline (neon) lighting per foot (kW_N/ft)
	kW _{LED} ∕ft	= kW of post-retrofit or energy-efficient lighting system (LED) lighting per foot (kW_{LED}/ft)

³³⁰ http://www.aepohio.com/global/utilities/lib/docs/save/programs/Application_Steps_Incentive_Process.pdf

LED Channel Signage

	L	= length of the sign (feet)
	Q ³³¹	= Average Stroke Length per Letter Width (Avg. feet/letter width), i.e. average length of neon (ft) / letter width (ft)
	N	= Number of Letters in the sign
ļ	CF	= Demand Coincidence Factor (See Section 1.4)
	EFLH	= Equivalent Full Load Hours – the average annual operating hours of the baseline lighting equipment, which if applied to full connected load will yield annual energy use.
	IF demand	= Interactive HVAC Demand Factor – applies to C&I interior lighting in space that has air conditioning or refrigeration only. This represents the secondary demand savings in cooling required which results from decreased indoor lighting wattage.
	IF energy	= Interactive HVAC Energy Factor – applies to C&I interior lighting in space that has air conditioning or refrigeration only. This represents the secondary energy savings in cooling required which results from decreased indoor lighting wattage.
	SVG	= The percent of time that lights are off due to lighting controls relative to the baseline controls system (typically manual switch).

³³¹The average length of neon per foot of letter is dependent on many variables, such as how long the neon stroke length is for each letter, how often the letter occurs, and how wide the letter is. The stroke length per letter is estimated using a simple LED alphanumeric display module. The height of the letter is assumed to be two units high and one unit wide. The stroke length per letter width is calculated by dividing the stroke length for each letter by its width. All letters are assumed to have one unit width except the letter "I." Southern California Edison Company, LED Channel Letter Signage (Red), Work Paper WPSCNRLG0052, Revision 1.

Table 3-93: LED Channel Signage Calculation Assumptions

Component	Туре	Value	Source
kW _N /ft	Variable	EDC Data Gathering Default: 0.00457 ³³²	EDC Data Gathering
kW _{LED} /ft	Variable	EDC Data Gathering Default: 0.00136 ³³³	EDC Data Gathering
Q	Fixed	5.20 –	4
CF	Fixed	See Table 3-6	Table 3-6
EFLH	Fixed	EDC Data Gathering Default: See Table 3-6	EDC Data Gathering Table 3-6
IF _{demand}	Fixed	See Table 3-7	Table 3-7
IF _{energy}	Fixed	See Table 3-7	Table 3-7
N	Variable	EDC Data Gathering	EDC Data Gathering
L	<u>Variable</u>	EDC Data Gathering	EDC Data Gathering
<u>SVG</u>	<u>Fixed</u>	See Table 3-7	See Table 3-7

Sources:

 Southern California Edison Company, LED Channel Letter Signage (Red), Work Paper WPSCNRLG0052, Revision 1.

3.30.4 Measure Life

Expected measure life is 15 years 334.

³³² Average values were estimated based on wattages data obtained from major channel letter lighting product manufacturers. Southern California Edison Company, LED Channel Letter Signage (Red), Work Paper WPSCNRLG0052, Revision 1.

³³³ ibid

³³⁴ Southern California Edison Company, LED Channel Letter Signage (Red), Work Paper WPSCNRLG0052, Revision 1, DEER only includes an LED Exit Sign measure which was used to estimate the effective useful life of the LED Channel Letter Signage. Actual life is 15 years. Capped at 15 years per Act 129.

3.31 Low Flow Pre-Rinse Sprayers

Measure Name	Low Flow Pre-Rinse Sprayers
Target Sector	Commercial Kitchens
Measure Unit	Pre Rinse Sprayer
Unit Energy Savings	Groceries: 151 kWh; Non-Groceries: 1,222 kWh
Unit Peak Demand Reduction	Groceries: 0.03kW; Non-Groceries: 0.23 kW
Measure Life	5 years

This protocol documents the energy savings and demand reductions attributed to efficient low flow pre-rinse sprayers in grocery and non-grocery (primarily food service) applications. The most likely areas of application are kitchens in restaurants and hotels. Only premises with electric water heating may qualify for this incentive. Low flow pre-rinse sprayers reduce hot water usage and save energy associated with water heating. The maximum flow rate of qualifying pre-rinse sprayers is 1.6 gpm.

This measure is applicable to Time Of Sale/Retail and Retrofit program types. The baseline will vary based on the delivery method and is defined below:

- Time of Sale/Retail: The baseline is assumed to be 1.6 GPM³³⁵ for both grocery and non-grocery applications.
- Retofit: The baseline is assumed to be an 2.25 GPM³³⁶ and 2.15 GPM³³⁷ for non-grocery and grocery applications respectively.

3.31.1 Algorithms

The energy savings and demand reduction are calculated through the protocols documented below.

 $\Delta kWh \text{ for Groceries} = ((F_{BG} \times U_{BG}) - (F_{PG} \times U_{PG})) \times 365 \times 8.33 \times (T_{HG} - T_C) / (EF \times 3413 + EF \times 34$

The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during noon and 8PM on summer weekdays to the total annual energy usage.

³³⁵ The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 GPM at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. This performance standard went into effect January 1, 2006.

³³⁶ Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray
Valve Installation Program (Phase 2), SBW Consulting, 2007, Table 3-4, p. 23
³³⁷ Ibid

$$\Delta kW_{peak}$$
 = EnergyToDemandFactor × Energy Savings

The Energy to Demand Factor is defined below:

EnergyToDemandFactor =
$$\frac{\text{Average Usage}_{\text{Summer WD Noon-8}}}{\text{Annual Energy Usage}}$$

The ratio of the average energy usage during noon and 8 PM on summer weekdays to the total annual energy usage is taken from usage profile data collected for commercial water heaters in CA. The usage profiles are shown in Figure 3-7. To ensure that the load shape data derived from observations in CA can be applied to PA, we compared the annual energy usage to peak demand factors for two disparate climate zones in CA. The results, shown in Figure 3-8, indicate that the ratio of peak demand to annual energy usage is not strongly influenced by climate. Also, though the actual usage profiles may be different, the average usage between noon and 8 PM on summer weekdays is quite similar for al building types. The close level of agreement between disparate climate zones and building types suggest that the results will carry over to Pennsylvania³³⁸.

Figure 3-7: Load shapes for hot water in four commercial building types

³³⁸ One reason for the close agreement is that the factor is a ratio of the energy usage to peak demand for the same location. Even though the energy usages may vary significantly in different climate zones, the hot water usage patterns may be driven by underlying practices that carry over well from state to state (e.g. dishwashing after lunch or dinner in restaurants).

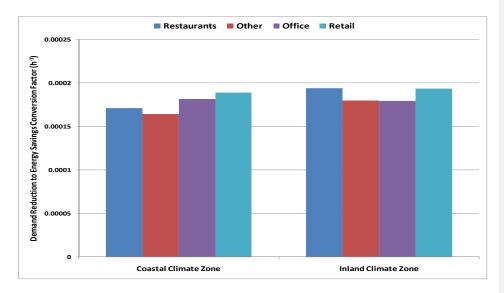


Figure 3-8: Energy to demand factors for four commercial building types.

3.31.2 Definition of Terms

The parameters in the above equation are listed in Table 3-94 below. The values for all parameters except incoming water temperature are taken from impact evaluation of the 2004-2005 California Urban Water council Pre-Rinse Spray Valve Installation Program.

F _{BNG}	= Baseline Flow Rate of Sprayer for Non-Grocery Applications
F _{PNG}	= Post Measure Flow Rate of Sprayer for Non-Grocery Applications
U_{BNG}	= Baseline Water Usage Duration for Non-Grocery Applications
U_{PNG}	= Post Measure Water Usage Duration for Non-Grocery Applications
F_{BG}	= Baseline Flow Rate of Sprayer for Grocery Applications
F_{PG}	= Post Measure Flow Rate of Sprayer for Grocery Applications
U_{BG}	= Baseline Water Usage Duration for Grocery Applications
U_{PG}	= Post Measure Water Usage Duration for Grocery Applications
T _{HNG}	= Temperature of hot water coming from the spray nozzle for Non-Grocery Application
T _C	= Incoming cold water temperature for Grocery and Non-Grocery Application

 $T_{\rm HG}$ = Temperature of hot water coming from the spray nozzle for Grocery Application

EF = Energy Factor of existing Electric Water Heater System

Table 3-94: Low Flow Pre-Rinse Sprayer Calculations Assumptions

Description	Туре	Value	Source
F _{BNG}	Fixed	Retrofit: 2.25 gpm	1, 7
		Time of Sale/Retail: 1.6 gpm	
F _{PNG}	Fixed	1.12 gpm	1
U _{BNG}	Fixed	32.4min/day	2
U _{PNG}	Fixed	43.8 min/day	2
F _{BG}	Fixed	Retrofit: 2.15 gpm	1, 7
		Time of Sale/Retail: 1.6 gpm	
F _{PG}	Fixed	1.12 gpm	1
U _{BG}	Fixed	4.8 min/day	2
U _{PG}	Fixed	6 min/day	2
T _{HNG}	Fixed	107°F	3
Tc	Fixed	55°F	6
T _{HG}	Fixed	97.6°F	3
EF	Fixed	0.904	4
EnergyToDemandFactor	Fixed	0.0001916	5

Sources:

- Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), SBW Consulting, 2007, Table 3-4, p. 23
- 2. Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), SBW Consulting, 2007, Table 3-6, p. 24
- 3. Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), SBW Consulting, 2007, Table 3-5, p. 23
- Federal Standards are 0.97 -0.00132 x Rated Storage in Gallons. For a 50-gallon tank this is approximately 0.90. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept. of Energy Docket Number: EE–2006–BT-STD–0129, p. 30

- The load shapes can be accessed online: http://www.ethree.com/CPUC/PG&ENonResViewer.zip
- 6. Mid-Atlantic TRM, footnote #24
- 6-7. The Energy Policy Act (EPAct) of 2005 sets the maximum flow rate for pre-rinse spray valves at 1.6 GPM at 60 pounds per square inch of water pressure when tested in accordance with ASTM F2324-03. This performance standard went into effect January 1, 2006.

3.31.3 Deemed Savings

The deemed energy savings for the installation of a low flow pre-rinse sprayer compared to a standard efficiency sprayer is 151 kWh/year for pre-rinse sprayers installed in grocery stores and 1222 kWh/year for pre-rinse sprayers installed in non-groceries building types such as restaurants. The deemed demand reductions for the installation of a low flow pre-rinse sprayer compared to a standard efficiency sprayer is 0.03 kW for pre-rinse sprayers installed in grocery stores and 0.23 kW for pre-rinse sprayers installed in non-groceries building types such as restaurants.

3.31.4 Measure Life

The effective life for this measure is 5 years³³⁹.

3.31.5 Evaluation Protocol

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

³³⁹ Impact and Process Evaluation Final Report for California Urban Water Conservation Council 2004-5 Pre-Rinse Spray Valve Installation Program (Phase 2), SBW Consulting, 2007, p. 30

3.32 Small C/I HVAC Refrigerant Charge Correction

Measure Name	Refrigerant Charge Correction
Target Sector	Small C/I HVAC
Measure Unit	Tons of Refrigeration Capacity
Unit Energy Savings	Varies
Unit Peak Demand Reduction	Varies
Measure Life	10 years

This protocol describes the assumptions and algorithms used to quantify energy savings for refrigerant charging on packaged AC units and heat pumps operating in small commercial applications. The protocol herein describes a partially deemed energy savings and demand reduction estimation.

3.32.1 Eligibility

This protocol is applicable for small commercial and industrial customers, and applies to documented tune-ups for package or split systems up to 20 tons.

3.32.2 Algorithms

This section describes the process of creating energy savings and demand reduction calculations.

For Cooling:

 $\triangle kWh$ = (EFLH_C ×CAPY_O/1000)× (1/[EER×RCF]-1/EER)

 ΔkW_{peak} = (CF × CAPY_C/1000) × (1/[EER×RCF]-1/EER)

Additional Heating Savings for Heat Pumps:

 $\triangle kWh$ = $(EFLH_{MH} \times CAPY_{H}/1000) \times (1/[HSPF \times RCF]-1/HSPF)$

3.32.3 Definition of Terms

CAPY_C = Unit Capacity, in Btu/h for cooling

CAPY_H = Unit Capacity, in Btu/h for heating

EER = Energy Efficiency Ratio

HSPF = Heating Seasonal Performance Factor

EFLH_C = Equivalent Full-Load Hours for Mechanical Cooling

 $EFLH_{MH}$ = Equivalent Full-Load Hours for Mechanical Heating³⁴⁰

RCF = COP Degradation Factor for Cooling

CF = Demand Coincidence Factor (See Section 1.4)

The values and sources are listed in Table 3-95.

Table 3-95: Refrigerant Charge Correction Calculations Assumptions

Component	Туре	Value	Source
CAPY _C	Variable	Nameplate	EDC Data Gathering
CAPY _H	Variable	Nameplate	EDC Data Gathering
EER	Variable	Nameplate Default: 9.0	EDC Data Gathering
HSPF	Variable	Default: 7.0	EDC Data Gathering
EFLH _C	Variable	Table 3-21 in 2012 PA TRM	2012 PA TRM
EFLH _{MH}	Variable	Take EFLH _{HM} as 70% of the listed EFLH _H in Table 3-22 in 2012 PA TRM	2
RCF	Variable	See Table 3-96	1
CF	Fixed	67%	Table 3-20 in 2011 PA TRM

Sources:

1. CA 2003 RTU Survey

Assumes 70% of heating is done by compressor, 30% by fan and supplemental resistive heat

Table 3-96: Refrigerant charge correction COP degradation factor (RCF) for various relative charge adjustments for both TXV metered and non-TXV units.³⁴¹.

% of nameplate charge added (removed)	RCF (TXV)	RCF (Orifice)	% of nameplate charge added (removed)	RCF (TXV)	RCF (Orifice)	% of nameplate charge added (removed)	RCF (TXV)	RCF (Orifice)
60%	68%	13%	28%	95%	83%	(4%)	100%	100%
59%	70%	16%	27%	96%	84%	(5%)	100%	99%

³⁴⁰ Here it is assumed that the compressor provides 70% of the heat, while the fan and supplemental heat strips provide the remaining 30% of the heating. The efficiency gains from refrigerant charging do not apply to the fan or supplemental heat strips.

³⁴¹ CA 2003 RTU Survey

						11		
58%	71%	19%	26%	96%	85%	(6%)	100%	99%
57%	72%	22%	25%	97%	87%	(7%)	99%	99%
56%	73%	25%	24%	97%	88%	(8%)	99%	99%
55%	74%	28%	23%	97%	89%	(9%)	99%	98%
54%	76%	31%	22%	98%	90%	(10%)	99%	98%
53%	77%	33%	21%	98%	91%	(11%)	99%	97%
52%	78%	36%	20%	98%	92%	(12%)	99%	97%
51%	79%	39%	19%	98%	92%	(13%)	99%	96%
50%	80%	41%	18%	99%	93%	(14%)	98%	96%
49%	81%	44%	17%	99%	94%	(15%)	98%	95%
48%	82%	46%	16%	99%	95%	(16%)	98%	95%
47%	83%	48%	15%	99%	95%	(17%)	98%	94%
46%	84%	51%	14%	99%	96%	(18%)	98%	93%
45%	85%	53%	13%	100%	97%	(19%)	98%	93%
44%	86%	55%	12%	100%	97%	(20%)	97%	92%
43%	86%	57%	11%	100%	98%	(21%)	97%	91%
42%	87%	60%	10%	100%	98%	(22%)	97%	90%
41%	88%	62%	9%	100%	98%	(23%)	97%	90%
40%	89%	64%	8%	100%	99%	(24%)	97%	89%
39%	89%	65%	7%	100%	99%	(25%)	96%	88%
38%	90%	67%	6%	100%	99%	(26%)	96%	87%
37%	91%	69%	5%	100%	100%	(27%)	96%	86%
36%	91%	71%	4%	100%	100%	(28%)	96%	85%
35%	92%	73%	3%	100%	100%	(29%)	95%	84%
34%	92%	74%	2%	100%	100%	(30%)	95%	83%
33%	93%	76%	1%	100%	100%	(31%)	95%	82%
32%	94%	77%	(0%)	100%	100%	(32%)	95%	81%
31%	94%	79%	(1%)	100%	100%	(33%)	95%	80%
30%	95%	80%	(2%)	100%	100%	(34%)	94%	78%
29%	95%	82%	(3%)	100%	100%	(35%)	94%	77%

3.32.4 Measure Life

According to the 2008 Database for Energy Efficiency Resources (DEER) EUL listing, the measure life for refrigerant charging is **10 years**³⁴².

 $^{342}\ http://www.deeresources.com/deer0911planning/downloads/EUL_Summary_10-1-08.xls$

Measure Name	Special Doors with Low or No Anti-Sweat Heat for Low Temp Case
Target Sector	Commercial Refrigeration
Measure Unit	Display Cases
Unit Energy Savings	Variable
Unit Peak Demand Reduction	Variable
Measure Life	15 years

Traditional clear glass display case doors consist of two-pane glass (three-pane in low and medium temperature cases), and aluminum doorframes and door rails. Glass heaters may be included to eliminate condensation on the door or glass. The door heaters are traditionally designed to overcome the highest humidity conditions as cases are built for nation-wide applications. New low heat/no heat door designs incorporate heat reflective coatings on the glass, gas inserted between the panes, non-metallic spacers to separate the glass panes, and/or non-metallic frames (such as fiberglass).

This protocol documents the energy savings attributed to the installation of special glass doors w/low/no anti-sweat heaters for low temp cases. The primary focus of this rebate measure is on new cases to incent customers to specify advanced doors when they are purchasing refrigeration cases.

3.33.1 Eligibility

For this measure, a no-heat/low-heat clear glass door must be installed on an upright display case. It is limited to door heights of 57 inches or more. Doors must have either heat reflective treated glass, be gas filled, or both. This measure applies to low temperature cases only—those with a case temperature below 0°F. Doors must have 3 or more panes. Total door rail, glass, and frame heater amperage (@ 120 volt) cannot exceed 0.39³⁴³ amps per linear foot for low temperature display cases. Rebate is based on the door width (not including case frame).

3.33.2 Algorithms

The energy savings and demand reduction are obtained through the following calculations adopted from California's Southern California Edison³⁴⁴.

Assumptions: Indoor Dry-Bulb Temperature of 75°F and Relative Humidity of 55%, (4-minute opening intervals for 16-second), neglect heat conduction through doorframe / assembly.

³⁴³ http://www.energysmartgrocer.org/pdfs/PGE/BridgeEquipment%20SpecificationTandCs.pdf

³⁴⁴ Southern California Edison. Non-Residential Express 2003 Refrigeration Work Paper. Pg. 27.

Compressor Savings (excluding condenser):

= [Q-cooling_{svg}/EER/1000] △ kW_{compressor}

△ kWh_{compressor} $= \Delta kW \times EFLH$

Q-cooling_{svg} = Q-cooling x K-ASH

Anti-Sweat Heater Savings:

 ΔkW_{ASH} $= \Delta ASH / 1000$

 ΔkWh_{ASH} $= \Delta kW_{ASH} x t$

3.33.3 **Definition of Terms**

The variables in the above equation are defined below:

Q-cooling = Case rating by manufacturer (Btu/hr/door)

Q-cooling_{svq} = Cooling savings (Btu/hr/door)

∆ kW_{compressor} = Compressor power savings (kW/door)

= Reduction due to ASH (kW/door) ∆ kW_{ASH}

K-ASH = % of cooling load reduction due to low anti-sweat heater

(Btu/hr/door reduction)

 Δ ASH = Reduction in ASH power per door (watts/door)

∆ kWh_{compressor} = Annual compressor energy savings (excluding condenser

energy), (kWh/door)

 Δ kWh_{ASH} = Annual Reduction in energy (kWh/door)

EER = Compressor rating from manufacturer (Btu/hr/Watts)

EFLH = Equivalent full load annual operating hours

= Annual operating hours of Anti-sweat heater t

Table 3-97: Special Doors with Low or No Anti-Sweat Heat for Low Temp Case Calculations Assumptions

Parameter	Туре	Value	Source
Q-cooling	Variable	Nameplate	EDC Data Gathering
K-ASH	Fixed	1.5%	1
EER	Variable	Nameplate	EDC Data Gathering
EFLH	Fixed	5,700 ³⁴⁵	1
ΔASH	Fixed	83 ³⁴⁶	1
t	Fixed	8,760	1

Sources:

 Southern California Edison. Non-Residential Express 2003 Refrigeration Work Paper. Pg. 27

3.33.4 Measure Life

The expected measure life is 15 years³⁴⁷.

³⁴⁵ EFLH was determined by multiplying annual available operation hours of 8,760 by overall duty cycle factors. Duty cycle is a function of compressor capacity, defrost and weather factor. The units are assumed to be operating 24/7, 8760 hrs/yr.

³⁴⁶ From Actual Test: 0.250 kW per 3 doors

http://energysmartonline.org/documents/EnergySmart_BPA_T&Cs.pdf

3.34 ENERGY STAR Room Air Conditioner

This protocol is for ENERGY STAR room air conditioner units installed in small commercial spaces. Only ENERGY STAR units qualify for this protocol.

3.34.1 Algorithms

 $\triangle kWh$ = (BtuH_{cool} / 1000) X (1/EER_{base} - 1/EER_{ee}) X EFLH_{cool}

 ΔkW_{peak} = (BtuH_{cool} / 1000) X (1/EER_{base} - 1/EER_{ee}) X CF

3.34.2 Definition of Terms

 $BtuH_{cool}$ = Rated cooling capacity of the energy efficient unit in $BtuH_{cool}$

 EER_{base} = Efficiency rating of the baseline unit.

 EER_{ee} = Efficiency rating of the energy efficiency unit.

CF = Demand Coincidence Factor (See Section 1.4)

EFLH_{cool} = Equivalent Full Load Hours for the cooling season – The kWh

during the entire operating season divided by the kW at design

conditions.

Table 3-98: Variables for HVAC Systems

Component	Туре	Value	Source
BtuH	Variable	Nameplate data (AHRI or AHAM)	EDC's Data Gathering
EER _{base}	Variable	Default values from Table 3-99	See Table 3-99
EERee	Variable	Nameplate data (AHRI or AHAM)	EDC's Data Gathering
CF	Fixed	80%	2
FFLH Veriable		Based on Logging or Modeling	EDC's Data Gathering
EFLH _{cool}	Variable	Default values from Table 3-100	See Table 3-100

Sources:

 Average based on coincidence factors from Ohio, New Jersey, Mid-Atlantic, Massachusetts, Connecticut, Illinois, New York, CEE and Minnesota. (74%, 67%, 81%, 94%, 82%, 72%, 100%, 70% and 76% respectively)

Table 3-99: Room Air Conditioner Baseline Efficiencies³⁴⁸

Equipment Type and Capacity	Cooling Baseline	Heating Baseline
Room AC		
< 8,000 BtuH	9.7 EER	N/A
≥ 8,000 BtuH and <14,000 BtuH	9.8 EER	N/A
≥ 14,000 BtuH and < 20,000 BtuH	9.7 EER	N/A
≥ 20,000 BtuH	8.5 EER	N/A

Table 3-100: Cooling EFLH for Pennsylvania Cities 349

Space and/or Building Type	Allentown	Erie	Harrisburg	Pittsburgh	Williamsport	Philadelphia	Scranton
College: Classes/Administrative	690	380	733	582	520	815	490
Convenience Stores	1,216	671	1,293	1,026	917	1,436	864
Dining: Bar Lounge/Leisure	912	503	969	769	688	1,077	648
Dining: Cafeteria / Fast Food	1,227	677	1,304	1,035	925	1,449	872
Dining: Restaurants	912	503	969	769	688	1,077	648
Lodging: Hotels/Motels/Dormitories	756	418	805	638	571	894	538
Lodging: Residential	757	418	805	638	571	894	538
Multi-Family (Common Areas)	1,395	769	1,482	1,176	1,052	1,647	991
Nursing Homes	1,141	630	1,213	963	861	1,348	811
Office: General/Retail	851	469	905	718	642	1,005	605
Office: Medical/Banks	851	469	905	718	642	1,005	605
Penitentiary	1,091	602	1,160	920	823	1,289	775
Police/Fire Stations (24 Hr)	1,395	769	1,482	1,176	1,052	1,647	991
Post Office/Town Hall/Court House	851	469	905	718	642	1,005	605
Religious Buildings/Church	602	332	640	508	454	711	428
Retail	894	493	950	754	674	1,055	635
Schools/University	634	350	674	535	478	749	451
Warehouses (Not Refrigerated)	692	382	735	583	522	817	492
Warehouses (Refrigerated)	692	382	735	583	522	817	492

 $^{^{348}}$ Baseline values from IECC 2009, after Jan 1, 2010 or Jan 23, 2010 as applicable. 349 US Department of Energy. Energy Star Calculator and Bin Analysis Models

4 DEMAND RESPONSE

The following sections provide guidance for calculating Act 129 peak load reductions for demand response measures. All references to PJM Business Rules in this section address computation of hourly load reductions during Act 129 load reduction events, rather than other events under PJM programs.

4.1 Determination of Act 129 Peak Load Reductions

4.1.1 Step 1a

Hourly peak load reductions from demand response (DR) measures for Direct Load Control (DLC) and Load Curtailment (LC) will be determined in accordance with PJM measurement & verification protocols, related business rules, protocol approval processes and settlement clearing due diligence practices³⁵⁰ that will be in place during the 2012 summer period (June 1 - September 30, 2012), as verified by the EDC and reviewed by both the EDCs' independent evaluators and the SWE. Peak load reductions from critical peak pricing (CPP) programs will be determined consistent with EDC EM&V Plans and consistent with PJM Customer Baseline methods and business rules, as they may be reasonably applied to the CPP programs. Peak load reductions from DLC, CPP and LC will be determined for each Act 129 DR event hour for June 1, 2012, through September 30, 2012. When determining customer baselines, Act 129 DR event days and PJM DR event days (e.g., for PJM emergencies and economic events for which participants have settlements) will be excluded to the extent that they are known.

Where customer baseline methods using day-of adjustments may produce conservative savings estimates if a customer participates in multiple events with differing starting times within a single day. In these situations where the Act 129 event starts after a PJM event, calculate the day-of adjustments using the first event so as to preserve the intent of the day-of adjustment,

4.1.2 Step 1b

Hourly peak load reductions from energy efficiency (EE) measures, CPP programs, conservation voltage control, and DR programs other than DLC and LC will be determined in accordance with the Technical Reference Manual (TRM) or a custom measure protocol vetted with the SWE. Peak load reductions from EE measures installed before June 1, 2012, occur equally in all event hours during the summer of 2012. Peak load reductions from EE measures installed between June 1, 2012, and September 30, 2012, occur equally in all event hours after the measure's installation date. Example: an energy efficiency measure installed on July 5, 2012, will contribute to peak load reduction event hours from July 5, 2012, forward.

4.1.3 Step 1c

The EDC's independent evaluator and the SWE will verify hourly peak load reductions for DR measures, and values to be applied for EE measures, pricing programs, and conservation voltage control in accordance with the EDC's approved Evaluation Plan. For DLC and LC, the verification method is to confirm that the peak load reductions were determined in accordance with PJM

³⁵⁰ See the Secretarial Letter issued by the Commission on January 12, 2011, at Docket No. M-2008-2069887.

protocols, related business rules, protocol approval processes and settlement clearing due diligence practices. The verification method for other programs will vary according to that program's evaluation plan and more specific measurement protocols vetted with the SWE, i.e. conservation voltage control.

4.1.4 Step 1d

Total Hourly Act 129 Peak Load Reduction in Each Hour (June 1 - September 30, 2012) = Peak load reductions from LC, CPP, and DLC DR Measures³⁵¹ + Constant Load Reductions from non-dispatchable measures (i.e., peak load reductions from EE measures + peak load reductions from DR programs other than DLC and LC to the extent they either follow PJM economic protocols or protocols otherwise specifically vetted with the SWE + reductions from conservation voltage control, etc.) An EDC will gross up the Total Hourly Peak Load Reduction in Each Hour (calculated at the customer level) to reflect transmission and distribution losses if the EDC's peak load reduction targets were determined at the system level.

4.2 Determine the "Top 100 Hours" (100 hours of highest peak load)

4.2.1 Step 2a

The EDC will record actual system load data for every hour from June 1, 2012, through September 30, 2012.

4.2.2 Step 2b

The EDC will reconstruct its system load curve by applying Act 129 "add-backs" (i.e., the Act 129 peak load reductions determined in Step 1d for every hour during the summer of 2012) to represent what the system load would have been if there were no Act 129 peak load reductions. If the load curve is not reconstructed, the actual load in an event hour will be lower than it would have been without the event, possibly excluding that event hour from the top 100 hours, which would inappropriately undermine assessment of the intended outcome. The reconstruction will include the following components:

- Add back the Act 129 peak load reductions determined in Step 1d for every hour during the summer of 2012. The EDCs' independent evaluators and the SWE may assess the impact of including or excluding add-backs for non-dispatchable measures.³⁵³
- Each EDC, and the SWE, will determine if pre-cooling and snapback effects from their Act 129 DR programs (increased usage occurring immediately before and immediately after control period) are significant enough to influence whether a non-event hour could

 $^{^{\}rm 351}$ This will be 0 MW if there was not a curtailment event in that hour.

³⁵² There is no need to weather normalize the reconstructed load curve. The peak load reduction targets were established using weather normalized data but actual load should not be weather normalized because it is intended to be the actual peaks for that summer regardless of weather.

peaks for that summer regardless of weather.

353 EDCs will have predictive models for identifying days and hours for initiating Act 129 DR events. Such models are informed by actual load information and active DR events (to the extent practicable), but will generally not include impacts of non-dispatchable measures that are based on data, information and verification sometimes months after-the-fact. Whether non-dispatchable impacts should be included as add-backs may, at the option of the EDC, be informed by evaluation. Whether included in add-back calculations or not, Constant Load Reductions installed during the June – September period would be included in calculation of Average Peak Load Reductions based on installation date.

become a peak hour if these effects are not addressed in the load reconstruction (by reducing system load in that hour by the magnitude of the snapback or pre-cooling). Depending on the types of actions that customers take to curtail load, e.g. shutting down air conditioning, failure to address pre-cooling and snapback could cause a non-event hour to become (incorrectly appear to be) a peak hour. If determined by the EDC, subject to SWE review and recommendation, pre-cooling and snapback information can be used to inform possible future versions of Act 129 EE&C (post-2013). Act 129 DR compliance for 2012 will not include pre-cooling and snapback in the reconstruction of the system load curve.

4.2.3 Step 2c

The EDC will identify the 100 specific hours (June 1, 2012, through September 30, 2012) in the reconstructed load data with the highest load. These are the "Top 100 Hours" (100 hours of highest peak load).

4.2.4 Step 2d

The EDC's independent evaluator and the SWE will review records to confirm these are the top 100 hours during June 1, 2012, through September 30, 2012.

4.2.5 Step 2 Notes

Note 1: There is no reason to add back PJM events for the Act 129 load reconstruction. Not to be confused with "add-backs" for participants in an EDC program who also participate in unrelated PJM DR program/events ("add-backs" for these events will be needed to accurately compute participant baselines). The Act 129 reconstruction should address Act 129 influences only, not unrelated influences such as unrelated PJM DR program participation, thunderstorms, and outages etc.

Note 2: For the purpose of calculating Customer Baselines (CBLs), and to ensure the most accurate representation of an Act 129 DR participant's end-use load pattern is utilized when computing event performance, EDCs shall calculate CBLs per PJM business rules.

Note 3: For the purpose of calculating CBLs for Act 129 events using PJM economic protocols, any DR events (PJM or Act 129) or outages should be excluded from the baseline calculation. While unrelated PJM DR events and outages are not relevant in determining the EDCs' system loads without Act 129, the purpose of calculating a CBL is to accurately estimate what the DR participant's load would have been if no Act 129 event had been called. For the purpose of accuracy, this requires utilizing days in the look back window that reflect normal operating demand (weekends/holidays are excluded from a weekday event calculation for the same reason). To no exclude PJM events and outages from the look back window will lead to demand reduction calculations and EDC system load reconstructions that less accurately reflect what peak demand would have been had there been no Act 129, which, in turn, could skew measured load reductions.

4.3 Determine the Act 129 Average Peak Load Reduction During the 100 Peak Hours

4.3.1 Step 3a

Sum the total Act 129 peak load reductions (determined for each hour in Step 1d) for each of the Top 100 Hours (determined in Step 2c). This is the Act 129 Total Peak Load Reduction During the Top 100 Hours.

4.3.2 Step 3b

Divide the Act 129 Total Peak Load Reductions During the Top 100 Hours (from Step 3a) by 100. This is The Act 129 Average Peak Load Reduction During the 100 Peak Hours.

Example:

90 hours in the "Top 100 Hours" each achieved 115 MW of Act 129 Peak Load Reduction. 10 hours in the "Top 100 Hours" achieved 0 MW of Act 129 Peak Load Reduction. Step 3a-- Act 129 Total Peak Load Reductions During the Top 100 Hours = $(90 \times 115) + (10 \times 0) = 10,350$ MW. Step 3b--Act 129 Average Peak Load Reductions During the 100 Peak Hours = 10,350 MW/100 = 103.5 MW.

4.3.3 Step 3 Notes

If the EDC's Act 129 peak load reduction target is 100 MW, then the example above meets (exceeds) the compliance target.

There are many other combinations that could produce 100 MW of Act 129 Average Peak Load Reductions During the 100 Peak Hours. For example, compliance with a 100 MW target can be achieved by any of the following:

- 1,000 MW Act 129 Peak Load Reduction in 10 of the top 100 hours (the other 90 top hours have 0 MW reduction)
- 100 MW Act 129 Peak Load Reduction in 100 of the top 100 hours
- 200 MW Act 129 Peak Load Reduction in 50 of the top 100 hours (the other 50 top hours have 0 MW reduction)
- 500 MW Act 129 Peak Load Reduction in 20 of the top 100 hours (the other 80 top hours have 0 MW reduction)

Definitions

Actual Load: Total metered load

Constant Load Reductions: Reductions from CVR, energy efficiency, time-based pricing, etc.

Event-Driven Load Reductions: Reductions from load curtailment, direct load control, etc.

Calculations	Section
Hourly Load Reductions = Constant Load Reductions + Event- Driven Load Reductions	1d
Hourly Reconstructed Load = Actual Load + Hourly Load Reductions (minus pre-cooling and snapback if applicable for EDC)	2b
Top 100 Hours = 100 hours with highest Hourly Reconstructed Loads	2c
Total Top 100 Peak Load Reductions = Sum of Hourly Load Reductions during Top 100 Hours	3а
Average Peak Load Reductions = Total Top 100 Peak Load Reductions / 100	3b

Figure 4-1: Demand Response Definitions and Calculations

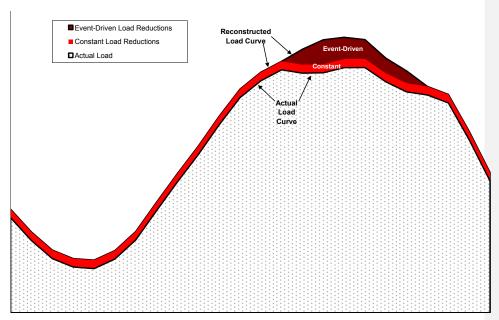


Figure 4-2: EDC Example Daily Load Curve

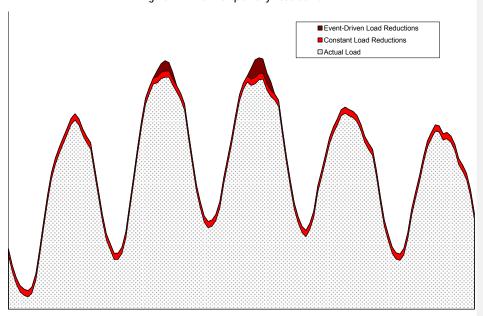


Figure 4-3: 5 Daily Load Curve Example

5 APPENDICES

5.1 Appendix A: Measure Lives

Measure Lives Used in Cost-Effectiveness Screening February 2008³⁵⁴

Program/Measure *For the purpose of calculating the total Resource Cost Test for Act 129, measure	Measure
cannot claim savings for more than fifteen years.	Life
RESIDENTIAL PROGRAMS	
ENERGY STAR Appliances	
ENERGY STAR Refrigerator post-2001	13
ENERGY STAR Refrigerator 2001	13
ENERGY STAR Dishwasher	11
ENERGY STAR Clothes Washer	11
ENERGY STAR Dehumidifier	12
ENERGY STAR Room Air Conditioners	10
ENERGY STAR Lighting	
Compact Fluorescent Light Bulb	6.4
Recessed Can Fluorescent Fixture	20*
Torchieres (Residential)	10
Fixtures Other	20*
ENERGY STAR Windows	
WINDOW -heat pump	20*
WINDOW -gas heat with central air conditioning	20*
WINDOW – electric heat without central air conditioning	20*
WINDOW – electric heat with central air conditioning	20*
Refrigerator/Freezer Retirement	
Refrigerator/Freezer retirement	8

³⁵⁴ Energy Star Appliances, Energy Star Lighting, and several Residential Electric HVAC measures lives updated February 2008. U.S. Environmental Protection Agency and U.S. Department of Energy, <u>Energy Star.</u>
http://www.energystar.gov/>.

Residential New Construction	
Single Family - gas heat with central air conditioner	20*
Single Family - oil heat with central air conditioner	20*
Single Family - all electric	20*
Multiple Single Family (Townhouse) – gas heat with central air conditioner	20*
Multiple Single Family (Townhouse) – oil heat with central air conditioner	20*
Multiple Single Family (Townhouse) - all electric	20*
Multi-Family – gas heat with central air conditioner	20*
Multi-Family - oil heat with central air conditioner	20*
Multi-Family - all electric	20*
ENERGY STAR Clothes Washer	11
Recessed Can Fluorescent Fixture	20*
Fixtures Other	20*
Efficient Ventilation Fans with Timer	10
Residential Electric HVAC	
Central Air Conditioner SEER 13	14
Central Air Conditioner SEER 14	14
Air Source Heat Pump SEER 13	12
Air Source Heat Pump SEER 14	12
Central Air Conditioner proper sizing/install	14
Central Air Conditioner Quality Installation Verification	14
Central Air Conditioner Maintenance	7
Central Air Conditioner duct sealing	14
Air Source Heat Pump proper sizing/install	12
ENERGY STAR Thermostat (Central Air Conditioner)	15
ENERGY STAR Thermostat (Heat Pump)	15
Ground Source Heat Pump	30*
Central Air Conditioner SEER 15	14
Air Source Heat Pump SEER 15	12
Room Air Conditioner Retirement	4
Home Performance with ENERGY STAR	
Blue Line Innovations – PowerCost MonitorTM	5

SECTION 5: Appendices

NON-RESIDENTIAL PROGRAMS	
C&I Construction	
Commercial Lighting (Non-SSL) — New	15
Commercial Lighting (Non-SSL) — Remodel/Replacement	15
Commercial Lighting (SSL – 25,000 hours) — New	6
Commercial Lighting (SSL – 30,000 hours) — New	7
Commercial Lighting (SSL – 35,000 hours) — New	8
Commercial Lighting (SSL – 40,000 hours) — New	10
Commercial Lighting (SSL – 45,000 hours) — New	11
Commercial Lighting (SSL – 50,000 hours) — New	12
Commercial Lighting (SSL – 55,000 hours) — New	13
Commercial Lighting (SSL – 60,000 hours) — New	14
Commercial Lighting (SSL – ≥60,000 hours) — New	15*
Commercial Lighting (SSL – 25,000 hours) — Remodel/Replacement	6
Commercial Lighting (SSL – 30,000 hours) — Remodel/Replacement	7
Commercial Lighting (SSL – 35,000 hours) — Remodel/Replacement	8
Commercial Lighting (SSL – 40,000 hours) — Remodel/Replacement	10
Commercial Lighting (SSL – 45,000 hours) — Remodel/Replacement	11
Commercial Lighting (SSL – 50,000 hours) — Remodel/Replacement	12
Commercial Lighting (SSL – 55,000 hours) — Remodel/Replacement	13
Commercial Lighting (SSL – 60,000 hours) — Remodel/Replacement	14
Commercial Lighting (SSL – ≥60,000 hours) — Remodel/Replacement	15*
Commercial Custom — New	18*
Commercial Chiller Optimization	18*
Commercial Unitary HVAC — New - Tier 1	15
Commercial Unitary HVAC — Replacement - Tier 1	15
Commercial Unitary HVAC — New - Tier 2	15
Commercial Unitary HVAC — Replacement Tier 2	15
Commercial Chillers — New	20*
Commercial Chillers — Replacement	20*
Commercial Small Motors (1-10 horsepower) — New or Replacement	20*
Commercial Medium Motors (11-75 horsepower) — New or Replacement	20*
Commercial Large Motors (76-200 horsepower) — New or Replacement	20*
Commercial Variable Speed Drive — New	15

SECTION 5: Appendices

Commercial Variable Speed Drive — Retrofit	15
Commercial Comprehensive New Construction Design	18*
Commercial Custom — Replacement	18*
Industrial Lighting — New	15
Industrial Lighting — Remodel/Replacement	15
Industrial Unitary HVAC — New - Tier 1	15
Industrial Unitary HVAC — Replacement - Tier 1	15
Industrial Unitary HVAC — New - Tier 2	15
Industrial Unitary HVAC — Replacement Tier 2	15
Industrial Chillers — New	20*
Industrial Chillers — Replacement	20*
Industrial Small Motors (1-10 horsepower) — New or Replacement	20*
Industrial Medium Motors (11-75 horsepower) — New or Replacement	20*
Industrial Large Motors (76-200 horsepower) — New or Replacement	20*
Industrial Variable Speed Drive — New	15
Industrial Variable Speed Drive — Retrofit	15
Industrial Custom — Non-Process	18*
Industrial Custom — Process	10
Building O&M	
O&M savings	3

There is a distinction between activities required to conduct measurement and verification of savings at the program participant level and the activities conducted by program evaluators and the SWE to validate those savings. However, the underlying standard for the measurement of the savings for both of these activities is the measurement and verification protocols approved by the PA PUC. These protocols are of three different types:

- TRM specified protocols for standard measures, originally approved in the May 2009 order adopting the TRM, and updated annually thereafter
- Interim Protocols for standard measures, reviewed and recommended by the SWE and approved for use by the Director of the CEEP, subject to modification and incorporation into succeeding TRM versions to be approved by the PA PUC
- Custom Measure Protocols reviewed and recommended by the SWE and approved for use by the Director of CEEP

These protocols are to be uniform and used to measure and calculate savings throughout Pennsylvania. The TRM protocols are comprised of Deemed Measures and Partially Deemed Measures. Deemed Measures specify saving per energy efficiency measure and require verifying that the measure has been installed, or in cases where that is not feasible, that the measure has been purchased by a utility customer. Partially Deemed Measures require both verification of installation and the measurement or quantification of open variables in the protocol.

Stipulated and deemed numbers are valid relative to a particular classification of "standard" measures. In the determination of these values, a normal distribution of values should have been incorporated. Therefore, during the measurement and verification process, participant savings measures cannot be arbitrarily treated as "custom measures" if the category allocation is appropriate.

Utility evaluators and the SWE will adjust the savings reported by program staff based on the application of the PA PUC approved protocols to a sample population and realization rates will be based on the application of these same standards. To the extent that the protocols or deemed values included in these protocols require modification, the appropriate statewide approval process will be utilized. These changes will be prospective.

5.3 Appendix C: Lighting Audit and Design Tool

The Lighting Audit and Design Tool is located on the Public Utility Commission's website at: http://www.puc.state.pa.us/electric/Act129/TRM.aspx

5.4 Appendix D: Motor & VFD Audit and Design Tool

The Motor and VFD Inventory Form is located on the Public Utility Commission's website at: http://www.puc.state.pa.us/electric/Act129/TRM.aspx.

5.5 Appendix E: Lighting Audit and Design Tool for New Construction Projects

The Lighting Audit and Design Tool is located on the Public Utility Commission's website at: http://www.puc.state.pa.us/electric/Act129/TRM.aspx

5.55.6 Appendix EF: Eligibility Requirements for Solid State Lighting Products in Commercial and Industrial Applications

The SSL market, still setting up its foundations, has been inundated with a great variety of products, including those that do not live up to manufacturers' claims. Several organizations, such as ENERGY STAR and Design Lights Consortium have responded by following standardized testing procedures and setting minimum requirements to be identified as a qualified product under those organizations.

5.5.15.6.1 Solid State Lighting

Due to the immaturity of the SSL market, diversity of product technologies and quality, and current lack of uniform industry standards, it is impossible to point to one source as the complete list of qualifying SSL products for inclusion in Act 129 efficiency programs. A combination of industry-accepted references have been collected to generate minimum criteria for the most complete list of products while not sacrificing quality and legitimacy of savings. The following states the minimum requirements for SSL products that qualify under the TRM:

For Act 129 energy efficiency measure savings qualification, for SSL products for which there is an ENERGY STAR commercial product category³⁵⁵, the product shall meet the minimum ENERGY STAR requirements³⁵⁶ ³⁵⁷ for the given product category. Products are not required to be on the ENERGY STAR Qualified Product List³⁵⁸, however, if a product is on the list it shall qualify for Act 129 energy efficiency programs and no additional supporting documentation shall be required. ENERGY STAR qualified commercial/non-residential product categories include:

- Omni-directional: A, BT, P, PS, S, T
- Decorative: B, BA, C, CA, DC, F, G
- Directional: BR, ER, K, MR, PAR, R
- Non-standard
- · Recessed, surface and pendant-mounted down-lights
- Under-cabinet shelf-mounted task lighting
- · Portable desk task lights
- Wall wash luminaires
- Bollards

³⁵⁵ ENERGY STAR website for Commercial LED Lighting:

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=LTG

http://www.energystar.gov/index.cfm?fuseaction=ssl.display products res html

^{156 &}quot;ENERGY STAR® Program Requirements for Integral LED Lamps

Partner Commitments." *LED Lamp Specification V1.1*, modified 03/22/10. Accessed from the ENERGY STAR website on September 28, 2010. http://www.energystar.gov/ia/partners/manuf-res/downloads/IntegralLampsFINAL.pdf

³⁵⁷ "ENERGY STAR® Program Requirements for Solid State Lighting Luminaires" *Eligibility Criteria V1.1*, Final 12/19/08. Accessed from the ENERGY STAR website on September 28, 2010.

http://www.energystar.gov/ia/partners/product_specs/program_regs/SSL_prog_reg_V1.1.pdf

³⁵⁸ ENERGY STAR Qualified LED Lighting list

For SSL products for which there is not an ENERGY STAR commercial product category, but for which there is a DLC commercial product category³⁵⁹, the product shall meet the minimum DLC requirements³⁶⁰ for the given product category. Products are not required to be on the DLC Qualified Product List³⁶¹, however, if a product is on the list it shall qualify for Act 129 energy efficiency programs and no additional supporting documentation shall be required. DLC qualified commercial product categories include:

- Outdoor Pole or Arm mounted Area and Roadway Luminaires
- Outdoor Pole or arm mounted Decorative Luminaires
- Outdoor Wall-Mounted Area Luminaires
- Parking Garage Luminaires
- Track or Mono-point Directional Lighting Fixtures
- · Refrigerated Case Lighting
- Display Case Lighting
- 2x2 Luminaires
- High-bay and Low-bay fixtures for Commercial and Industrial buildings

For SSL products that are not on either of the listed qualified products lists, they can still be considered for inclusion in Act 129 energy efficiency programs by submitting the following documentation to show compliance with the minimum product category criteria as described above:

- Manufacturer's product information sheet
- · LED package/fixture specification sheet
- List the ENERGY STAR or DLC product category for which the luminaire qualifies
- Summary table listing the minimum reference criteria and the corresponding product values for the following variables:
 - o Light output in lumens
 - Luminaire efficacy (lm/W)
 - Color rendering index (CRI)

 $\underline{\text{http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php}$

³⁵⁹ DesignLights Consortium (DLC) Technical Requirements Table v1.4. Accessed from the DLC website on September 24, 2010. http://www.designlights.org/solidstate.manufacturer.requirements.php
360 Ibid

³⁶¹ DesignLights Consortium (DLC) Qualified Product List.

[&]quot;This Qualified Products List (QPL) of LED luminaires signifies that the proper documentation has been submitted to DesignLights (DLC) and the luminaire has met the criteria noted in the technical requirements table shown on the DesignLights website (www.designlights.org). This list is exclusively used and owned by DesignLights Members. Manufacturers, vendors and other non DesignLights members may use the QPL as displayed herein subject to the DLC Terms of Use, and are prohibited from tampering with any portion or all of its contents. For information on becoming a member please go to DesignLights.org."

- Correlated color temperature (CCT)
- LED lumen maintenance at 6000 hrs
- Manufacturer's estimated lifetime for L₇₀ (70% lumen maintenance at end of useful life) (manufacturer should provide methodology for calculation and justification of product lifetime estimates)
- Operating frequency of the lamp
- IESNA LM-79-08 test report(s) (from approved labs specified in DOE Manufacturers' Guide) containing:
 - o Photometric measurements (i.e. light output and efficacy)
 - Colorimetry report (i.e. CCT and CRI)
 - Electrical measurements (i.e. input voltage and current, power, power factor, etc.)
- Lumen maintenance report (select one of the two options and submit all of its corresponding required documents):
 - Option 1: Compliance through component performance (for the corresponding LED package)
 - IESNA LM-80 test report
 - In-situ temperature measurements test (ISTMT) report.
 - Schematic/photograph from LED package manufacturer that shows the specified temperature measurement point (TMP)
 - o Option 2: Compliance through luminaire performance
 - IESNA LM-79-08 report at 0 hours (same file as point c)
 - IESNA LM-79-08 report at 6000 hours after continuous operation in the appropriate ANSI/UL 1598 environment (use ANSI/UL 1574 for track lighting systems).

All supporting documentation must include a specific, relevant model or part number.

5.65.7 Appendix FG: Zip Code Mapping

Per Section 1.16, the following table is to be used to determine the appropriate reference city for each Pennsylvania zip code.

Zip	Reference City
15001	Pittsburgh
15003	Pittsburgh
15004	Pittsburgh
15005	Pittsburgh
15006	Pittsburgh
15007	Pittsburgh
15009	Pittsburgh
15010	Pittsburgh
15012	Pittsburgh
15014	Pittsburgh
15015	Pittsburgh
15017	Pittsburgh
15018	Pittsburgh
15019	Pittsburgh
15020	Pittsburgh
15021	Pittsburgh
15022	Pittsburgh
15024	Pittsburgh
15025	Pittsburgh
15026	Pittsburgh
15027	Pittsburgh
15028	Pittsburgh
15030	Pittsburgh
15031	Pittsburgh
15032	Pittsburgh
15033	Pittsburgh
15034	Pittsburgh
15035	Pittsburgh
15036	Pittsburgh
15037	Pittsburgh
15038	Pittsburgh
15042	Pittsburgh
15043	Pittsburgh
15044	Pittsburgh
15045	Pittsburgh
15046	Pittsburgh
15047	Pittsburgh
15049	Pittsburgh
15050	Pittsburgh
15051	Pittsburgh
15052	Pittsburgh
15053	Pittsburgh

Zip	Reference City
15054	Pittsburgh
15055	Pittsburgh
15056	Pittsburgh
15057	Pittsburgh
15059	Pittsburgh
15060	Pittsburgh
15061	Pittsburgh
15062	Pittsburgh
15063	Pittsburgh
15064	Pittsburgh
15065	Pittsburgh
15066	Pittsburgh
15067	Pittsburgh
15068	Pittsburgh
15069	Pittsburgh
15071	Pittsburgh
15072	Pittsburgh
15074	Pittsburgh
15075	Pittsburgh
15076	Pittsburgh
15077	Pittsburgh
15078	Pittsburgh
15081	Pittsburgh
15082	Pittsburgh
15083	Pittsburgh
15084	Pittsburgh
15085	Pittsburgh
15086	Pittsburgh
15087	Pittsburgh
15088	Pittsburgh
15089	Pittsburgh
15090	Pittsburgh
15091	Pittsburgh
15095	Pittsburgh
15096	Pittsburgh
15101	Pittsburgh
15102	Pittsburgh
15104	Pittsburgh
15106	Pittsburgh
15108	Pittsburgh
15110	Pittsburgh
15112	Pittsburgh

Zip Reference City 15116 Pittsburgh 15120 Pittsburgh 15122 Pittsburgh 15123 Pittsburgh 15126 Pittsburgh 15127 Pittsburgh 15129 Pittsburgh 15130 Pittsburgh 15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15138 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15149 Pittsburgh 15140 Pittsburgh 15141 Pittsburgh 15142 Pittsburgh		
15120 Pittsburgh 15122 Pittsburgh 15123 Pittsburgh 15126 Pittsburgh 15127 Pittsburgh 15129 Pittsburgh 15130 Pittsburgh 15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15149 Pittsburgh 15140 Pittsburgh 15141 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh	Zip	Reference City
15122 Pittsburgh 15123 Pittsburgh 15126 Pittsburgh 15127 Pittsburgh 15129 Pittsburgh 15130 Pittsburgh 15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15149 Pittsburgh 15140 Pittsburgh 15141 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh		Pittsburgh
15123 Pittsburgh 15126 Pittsburgh 15127 Pittsburgh 15129 Pittsburgh 15130 Pittsburgh 15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15149 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh	15120	Pittsburgh
15126 Pittsburgh 15127 Pittsburgh 15129 Pittsburgh 15130 Pittsburgh 15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15149 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh		Pittsburgh
15127 Pittsburgh 15129 Pittsburgh 15130 Pittsburgh 15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15149 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh	15123	Pittsburgh
15129 Pittsburgh 15130 Pittsburgh 15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15149 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh	15126	Pittsburgh
15130 Pittsburgh 15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15149 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh		Pittsburgh
15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh	15129	Pittsburgh
15131 Pittsburgh 15132 Pittsburgh 15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh	15130	Pittsburgh
15133 Pittsburgh 15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh	15131	Pittsburgh
15134 Pittsburgh 15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15148 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15211 Pittsburgh 15213 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15132	Pittsburgh
15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15148 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15133	Pittsburgh
15135 Pittsburgh 15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15148 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15134	Pittsburgh
15136 Pittsburgh 15137 Pittsburgh 15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15148 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh		Pittsburgh
15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh	15136	
15139 Pittsburgh 15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh		
15140 Pittsburgh 15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh		
15142 Pittsburgh 15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15148 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15140	Pittsburgh
15143 Pittsburgh 15144 Pittsburgh 15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh		
15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15143	
15145 Pittsburgh 15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15144	Pittsburgh
15146 Pittsburgh 15147 Pittsburgh 15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh		
15147 Pittsburgh 15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15146	
15148 Pittsburgh 15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh	15147	
15189 Pittsburgh 15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh	15148	
15201 Pittsburgh 15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh		
15202 Pittsburgh 15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh		
15203 Pittsburgh 15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh		
15204 Pittsburgh 15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh	15203	
15205 Pittsburgh 15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh		
15206 Pittsburgh 15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15205	
15207 Pittsburgh 15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15215 Pittsburgh	15206	
15208 Pittsburgh 15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15216 Pittsburgh		
15209 Pittsburgh 15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15216 Pittsburgh		
15210 Pittsburgh 15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15216 Pittsburgh		
15211 Pittsburgh 15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15216 Pittsburgh	15210	
15212 Pittsburgh 15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15216 Pittsburgh		
15213 Pittsburgh 15214 Pittsburgh 15215 Pittsburgh 15216 Pittsburgh		
15214 Pittsburgh 15215 Pittsburgh 15216 Pittsburgh	15213	
15215 Pittsburgh 15216 Pittsburgh	15214	
15216 Pittsburgh	15215	
15217 Pittsburgh	15216	
	15217	

Zip	Reference City
15218	Pittsburgh
15219	Pittsburgh
15220	Pittsburgh
15221	Pittsburgh
15222	Pittsburgh
15223	Pittsburgh
15224	Pittsburgh
15225	Pittsburgh
15226	Pittsburgh
15227	Pittsburgh
15228	Pittsburgh
15229	Pittsburgh
15230	Pittsburgh
15231	Pittsburgh
15232	Pittsburgh
15233	Pittsburgh
15234	Pittsburgh
15235	Pittsburgh
15236	Pittsburgh
15237	Pittsburgh
15238	Pittsburgh
15239	Pittsburgh
15240	Pittsburgh
15241	Pittsburgh
15242	Pittsburgh
15243	Pittsburgh
15244	Pittsburgh
15250	Pittsburgh
15251	Pittsburgh
15252	Pittsburgh
15253	Pittsburgh
15254	Pittsburgh
15255	Pittsburgh
15257	Pittsburgh
15258	Pittsburgh
15259	Pittsburgh
15260	Pittsburgh
15261	Pittsburgh
15262	Pittsburgh
15263	Pittsburgh
15264	Pittsburgh
15265	Pittsburgh
15267	Pittsburgh
15268	Pittsburgh
15270	Pittsburgh
15272	Pittsburgh
15274	Pittsburgh

Zip	Reference City
15275	Pittsburgh
15276	Pittsburgh
15277	Pittsburgh
15278	Pittsburgh
15279	Pittsburgh
15281	Pittsburgh
15282	Pittsburgh
15283	Pittsburgh
15285	Pittsburgh
15286	Pittsburgh
15829	Pittsburgh
15290	Pittsburgh
15295	Pittsburgh
15301	Pittsburgh
15310	Pittsburgh
15311	Pittsburgh
15312	Pittsburgh
15313	Pittsburgh
15314	Pittsburgh
15315	Pittsburgh
15316	Pittsburgh
15317	Pittsburgh
15320	Pittsburgh
15321	Pittsburgh
15322	Pittsburgh
15323	Pittsburgh
15324	Pittsburgh
15325	Pittsburgh
15327	Pittsburgh
15329	Pittsburgh
15330	Pittsburgh
15331	Pittsburgh
15332	Pittsburgh
15333	Pittsburgh
15334	Pittsburgh
15336	Pittsburgh
15337	Pittsburgh
15338	Pittsburgh
15339	Pittsburgh
15340	Pittsburgh
15341	Pittsburgh
15342	Pittsburgh
15344	Pittsburgh
15345	Pittsburgh
15346	Pittsburgh
15347	Pittsburgh
15348	Pittsburgh

Zip	Reference City
-	_
15349	Pittsburgh
15350	Pittsburgh
15351	Pittsburgh
15352	Pittsburgh
15353	Pittsburgh
15354	Pittsburgh
15357	Pittsburgh
15358	Pittsburgh
15359	Pittsburgh
15360	Pittsburgh
15361	Pittsburgh
15362	Pittsburgh
15363	Pittsburgh
15364	Pittsburgh
15365	Pittsburgh
15366	Pittsburgh
15367	Pittsburgh
15368	Pittsburgh
15370	Pittsburgh
15376	Pittsburgh
15377	Pittsburgh
15378	Pittsburgh
15379	Pittsburgh
15380	Pittsburgh
15401	Pittsburgh
15410	Pittsburgh
15411	Pittsburgh
15412	Pittsburgh
15413	Pittsburgh
15415	Pittsburgh
15416	Pittsburgh
15417	Pittsburgh
15419	Pittsburgh
15420	Pittsburgh
15421	Pittsburgh
15422	Pittsburgh
15423	Pittsburgh
15424	Pittsburgh
15425	Pittsburgh
15427	Pittsburgh
15428	Pittsburgh
15429	Pittsburgh
15430	Pittsburgh
15431	Pittsburgh
15431	Pittsburgh
15433	Pittsburgh
15434	Pittsburgh
10404	riusburgii

Zip	Reference City
15435	Pittsburgh
15436	Pittsburgh
15437	Pittsburgh
15438	Pittsburgh
15439	Pittsburgh
15440	Pittsburgh
15442	Pittsburgh
15443	Pittsburgh
15444	Pittsburgh
15445	Pittsburgh
15446	Pittsburgh
15447	Pittsburgh
15448	Pittsburgh
15449	Pittsburgh
15450	Pittsburgh
15451	Pittsburgh
15454	Pittsburgh
15455	Pittsburgh
15456	Pittsburgh
15458	Pittsburgh
15459	Pittsburgh
15460	Pittsburgh
15461	Pittsburgh
15462	Pittsburgh
15463	Pittsburgh
15464	Pittsburgh
15465	Pittsburgh
15466	Pittsburgh
15467	Pittsburgh
15468	Pittsburgh
15469	Pittsburgh
15470	Pittsburgh
15472	Pittsburgh
15473	Pittsburgh
15474	Pittsburgh
15475	Pittsburgh
15476	Pittsburgh
15477	Pittsburgh
15478	Pittsburgh
15479	Pittsburgh
15480	Pittsburgh
15482	Pittsburgh
15483	Pittsburgh
15484	Pittsburgh
15485	Pittsburgh
15486	Pittsburgh
15488	Pittsburgh

Zip	Reference City
15489	-
15499	Pittsburgh Pittsburgh
15490	Pittsburgh
15501	Pittsburgh
15502	Pittsburgh
15510	Pittsburgh
15520	Pittsburgh
15521	Pittsburgh
15522	Pittsburgh
15530	Pittsburgh
15531	Pittsburgh
15532	Pittsburgh
15533	Harrisburg
15534	Pittsburgh
15535	
15536	Pittsburgh Harrisburg
15537	
15538	Harrisburg Pittsburgh
15539	Pittsburgh
15540	Pittsburgh
15541	
15541	Pittsburgh
15544	Pittsburgh
15544	Pittsburgh
15546	Pittsburgh
15547	Pittsburgh
	Pittsburgh
15548 15549	Pittsburgh
	Pittsburgh Pittsburgh
15550 15551	Pittsburgh
15552	Pittsburgh
15553	Pittsburgh
15554 15555	Pittsburgh Pittsburgh
15557	
	Pittsburgh
15558	Pittsburgh
15559	Pittsburgh
15560	Pittsburgh
15561	Pittsburgh
15562	Pittsburgh
15563	Pittsburgh
15564	Pittsburgh
15565	Pittsburgh
15601	Pittsburgh
15605	Pittsburgh
15606	Pittsburgh
15610	Pittsburgh

Zip Reference City 15611 Pittsburgh 15612 Pittsburgh 15613 Pittsburgh 15615 Pittsburgh 15616 Pittsburgh 15617 Pittsburgh 15618 Pittsburgh 15619 Pittsburgh 15620 Pittsburgh	
15612 Pittsburgh 15613 Pittsburgh 15615 Pittsburgh 15616 Pittsburgh 15617 Pittsburgh 15618 Pittsburgh 15619 Pittsburgh	
15613 Pittsburgh 15615 Pittsburgh 15616 Pittsburgh 15617 Pittsburgh 15618 Pittsburgh 15619 Pittsburgh	
15615 Pittsburgh 15616 Pittsburgh 15617 Pittsburgh 15618 Pittsburgh 15619 Pittsburgh	
15616 Pittsburgh 15617 Pittsburgh 15618 Pittsburgh 15619 Pittsburgh	
15617 Pittsburgh 15618 Pittsburgh 15619 Pittsburgh	
15618 Pittsburgh 15619 Pittsburgh	
15619 Pittsburgh	
15620 Ditteburgh	
15621 Pittsburgh	
15622 Pittsburgh	
15623 Pittsburgh	
15624 Pittsburgh	
15625 Pittsburgh	
15626 Pittsburgh	
15627 Pittsburgh	
15628 Pittsburgh	
15629 Pittsburgh	
15631 Pittsburgh	
15632 Pittsburgh	
15633 Pittsburgh	
15634 Pittsburgh	
15635 Pittsburgh	
15636 Pittsburgh	
15637 Pittsburgh	
15638 Pittsburgh	
15639 Pittsburgh	
15640 Pittsburgh	
15641 Pittsburgh	
15642 Pittsburgh	
15644 Pittsburgh	
15646 Pittsburgh	
15647 Pittsburgh	
15650 Pittsburgh	
15655 Pittsburgh	
15656 Pittsburgh	
15658 Pittsburgh	
15660 Pittsburgh	
15661 Pittsburgh	
15662 Pittsburgh	
15663 Pittsburgh	
15664 Pittsburgh	Τ
15665 Pittsburgh	
15666 Pittsburgh	
15668 Pittsburgh	
15670 Pittsburgh	
15671 Pittsburgh	

Zip	Reference City
15672	Pittsburgh
15673	Pittsburgh
15674	Pittsburgh
15675	Pittsburgh
15676	Pittsburgh
15677	Pittsburgh
15678	Pittsburgh
15679	Pittsburgh
15680	Pittsburgh
15681	Pittsburgh
15682	Pittsburgh
15683	Pittsburgh
15684	Pittsburgh
15685	Pittsburgh
15686	Pittsburgh
15687	Pittsburgh
15688	Pittsburgh
15689	Pittsburgh
15690	Pittsburgh
15691	Pittsburgh
15692	Pittsburgh
15693	Pittsburgh
15695	Pittsburgh
15696	Pittsburgh
15697	Pittsburgh
15698	Pittsburgh
15701	Pittsburgh
15705	Pittsburgh
15710	Pittsburgh
15711	Pittsburgh
15712	Pittsburgh
15713	Pittsburgh
15714	Pittsburgh
15715	Pittsburgh
15716	Pittsburgh
15717	Pittsburgh
15720	Pittsburgh
15721	Pittsburgh
15722	Pittsburgh
15723	Pittsburgh
15724	Pittsburgh
15725	Pittsburgh
15727	Pittsburgh
15728	Pittsburgh
15729	Pittsburgh
15730	Pittsburgh
15731	Pittsburgh

Zip	Reference City
15732	-
15732	Pittsburgh Pittsburgh
15734	Pittsburgh
15736 15737	Pittsburgh Pittsburgh
	•
15738 15739	Pittsburgh
15740	Pittsburgh
15740	Pittsburgh
15741	Pittsburgh Pittsburgh
15742	Pittsburgh
15744	
15745	Pittsburgh
15746	Pittsburgh
	Pittsburgh Pittsburgh
15748 15750	Pittsburgh
15750	Pittsburgh
15753	
15753	Pittsburgh Pittsburgh
15754	Pittsburgh
15755	Pittsburgh
15757	Pittsburgh
15758	Pittsburgh
15760	Pittsburgh
15761	Pittsburgh
15762	Pittsburgh
15763	Pittsburgh
15764	Pittsburgh
15765	Pittsburgh
15767	Pittsburgh
15770	Pittsburgh
15771	Pittsburgh
15772	Pittsburgh
15773	Pittsburgh
15774	Pittsburgh
15775	Pittsburgh
15776	Pittsburgh
15777	Pittsburgh
15777	Pittsburgh
	Pittsburgh
15779 15780	Pittsburgh
15781	Pittsburgh
15783	Pittsburgh
15784	Pittsburgh
15801	Pittsburgh
15821	Williamsport
15822	
10022	Williamsport

gh gh port gh port port port port port port
gh port gh port port port port port port port
gh port gh port port port port port port port
port jh port port port port port port
port port port port port
port port port port port
port port port port port
port port jh port
port jh port
port
port
port
jh
jh
port
jh
,
jh
port
port
port
jh
jh
jh
jh
port
port
jh
ıh
jh
jh
jh
jh

Zip	Reference City
15931	Pittsburgh
15934	Pittsburgh
15935	Pittsburgh
15936	Pittsburgh
15937	Pittsburgh
15938	Pittsburgh
15940	Pittsburgh
15942	Pittsburgh
15943	Pittsburgh
15944	Pittsburgh
15945	Pittsburgh
15946	Pittsburgh
15948	Pittsburgh
15949	Pittsburgh
15951	Pittsburgh
15952	Pittsburgh
15953	Pittsburgh
15954	Pittsburgh
15955	Pittsburgh
15956	Pittsburgh
15957	Pittsburgh
15958	Pittsburgh
15959	Pittsburgh
15960	Pittsburgh
15961	Pittsburgh
15962	Pittsburgh
15963	Pittsburgh
16001	Pittsburgh
16002	Pittsburgh
16003	Pittsburgh
16016	Pittsburgh
16017	Pittsburgh
16018	Pittsburgh
16020	Pittsburgh
16021	Pittsburgh
16022	Pittsburgh
16023	Pittsburgh
16024	Pittsburgh
16025	Pittsburgh
16027	Pittsburgh
16028	Pittsburgh
16029	Pittsburgh
16030	Pittsburgh
16033	Pittsburgh
16034	Pittsburgh
16035	Pittsburgh
16036	Pittsburgh

Zip	Reference City
16037	Pittsburgh
16038	Pittsburgh
16039	Pittsburgh
16040	Pittsburgh
16041	Pittsburgh
16045	Pittsburgh
16046	Pittsburgh
16048	Pittsburgh
16049	Pittsburgh
16050	Pittsburgh
16051	Pittsburgh
16052	Pittsburgh
16053	Pittsburgh
16054	Pittsburgh
16055	Pittsburgh
16056	Pittsburgh
16057	Pittsburgh
16058	Pittsburgh
16059	Pittsburgh
16061	Pittsburgh
16063	Pittsburgh
16066	Pittsburgh
16101	Pittsburgh
16102	Pittsburgh
16103	Pittsburgh
16105	Pittsburgh
16107	Pittsburgh
16108	Pittsburgh
16110	Erie
16111	Erie
16112	Pittsburgh
16113	Erie
16114	Erie
16115	Pittsburgh
16116	Pittsburgh
16117	Pittsburgh
16120	Pittsburgh
16121	Pittsburgh
16123	Pittsburgh
16124	Erie
16125	Erie
16127	Pittsburgh
16130	Erie
16131	Erie
16132	Pittsburgh
16133	Pittsburgh
16134	Erie

Zip	Reference City
16136	Pittsburgh
16137	Pittsburgh
16140	Pittsburgh
16141	Pittsburgh
16142	Pittsburgh
16143	Pittsburgh
16145	Erie
16146	Pittsburgh
16148	Pittsburgh
16150	Pittsburgh
16151	Erie
16153	Erie
16154	Erie
16155	Pittsburgh
16156	Pittsburgh
16157	Pittsburgh
16159	Pittsburgh
16160	Pittsburgh
16161	Pittsburgh
16172	Pittsburgh
16201	Pittsburgh
16210	Pittsburgh
16211	Pittsburgh
16212	Pittsburgh
16213	Pittsburgh
16214	Pittsburgh
16215	Pittsburgh
16217	Erie
16218	Pittsburgh
16220	Erie
16221	Pittsburgh
16222	Pittsburgh
16223	Pittsburgh
16224	Pittsburgh
16225	Pittsburgh
16226	Pittsburgh
16228	Pittsburgh
16229	Pittsburgh
16230	Pittsburgh
16232	Pittsburgh
16233	Erie
16234	Pittsburgh
16235	Erie
16236	Pittsburgh
16238	Pittsburgh
16239	Erie
16240	Pittsburgh

Zip	Reference City
16242	Pittsburgh
16244	Pittsburgh
16245	Pittsburgh
16246	Pittsburgh
16248	Pittsburgh
16249	Pittsburgh
16250	Pittsburgh
16253	Pittsburgh
16254	Pittsburgh
16255	Pittsburgh
16256	Pittsburgh
16257	Erie
16258	Pittsburgh
16259	Pittsburgh
16260	Erie
16261	Pittsburgh
16262	Pittsburgh
16263	Pittsburgh
16301	Erie
16311	Erie
16312	Erie
16313	Erie
16314	Erie
16316	Erie
16317	Erie
16319	Erie
16321	Erie
16322	Erie
16323	Erie
16326	Erie
16327	Erie
16328	Erie
16329	Erie
16331	Pittsburgh
16332	Erie
16333	Erie
16334	Erie
16335	Erie
16340	Erie
16341	Erie
16342	Erie
16343	Erie
16344	Erie
16345	Erie
16346	Erie
16347	Erie
16350	Erie

Zip	Reference City
16351	Erie
16352	Erie
16353	Erie
16354	Erie
16360	Erie
16361	Erie
16362	Erie
16364	Erie
16365	Erie
16366	Erie
16367	Erie
16368	Erie
16369	Erie
16370	Erie
16371	Erie
16372	Pittsburgh
16373	Pittsburgh
16374	Pittsburgh
16375	Pittsburgh
16388	Erie
16401	Erie
16402	Erie
16403	Erie
16404	Erie
16405	Erie
16406	Erie
16407	Erie
16410	Erie
16411	Erie
16412	Erie
16413	Erie
16415	Erie
16416	Erie
16417	Erie
16420	Erie
16421	Erie
16422	Erie
16423	Erie
16424	Erie
16426	Erie
16427	Erie
16428	Erie
16430	Erie
16432	Erie
16433	Erie
16434	Erie
16435	Erie

Zip	Reference City
16436	Erie
16438	Erie
16440	Erie
16441	Erie
16442	Erie
16443	Erie
16444	Erie
16475	Erie
16501	Erie
16502	Erie
16503	Erie
16504	Erie
16505	Erie
16506	Erie
16507	Erie
16508	Erie
16509	Erie
16510	Erie
16511	Erie
16512	Erie
16514	Erie
16515	Erie
16522	Erie
16530	Erie
16531	Erie
16532	Erie
16533	Erie
16534	Erie
16538	Erie
16541	Erie
16544	Erie
16546	Erie
16550	Erie
16553	Erie
16554	Erie
16563	Erie
16565	Erie
16601	Pittsburgh
16602	Pittsburgh
16603	Pittsburgh
16611	Harrisburg
16613	Pittsburgh
16616	Pittsburgh
16617	Williamsport
16619	Pittsburgh
16620	Williamsport
16621	Harrisburg

Zip	Reference City
16622	Harrisburg
16623	Harrisburg
16624	Pittsburgh
16625	Pittsburgh
16627	Pittsburgh
16629	Pittsburgh
16630	Pittsburgh
16631	Harrisburg
16633	Harrisburg
16634	Harrisburg
16635	Pittsburgh
16636	Pittsburgh
16637	Pittsburgh
16638	Harrisburg
16639	Pittsburgh
16640	Pittsburgh
16641	Pittsburgh
16644	Pittsburgh
16645	Pittsburgh
16646	Pittsburgh
16647	Harrisburg
16648	Pittsburgh
16650	Harrisburg
16651	Williamsport
16652	Harrisburg
16654	Harrisburg
16655	Pittsburgh
16656	Pittsburgh
16657	Harrisburg
16659	Harrisburg
16660	Harrisburg
16661	Williamsport
16662	Harrisburg
16663	Williamsport
16664	Pittsburgh
16665	Pittsburgh
16666	Williamsport
16667	Pittsburgh
16668	Pittsburgh
16669	Harrisburg
16670	Pittsburgh
16671	Williamsport
16672	Harrisburg
16673	Pittsburgh
16674	Harrisburg
16675	Pittsburgh
16677	Williamsport

Zip	Reference City
-	-
16678 16679	Harrisburg
16680	Harrisburg
16681	Williamsport Williamsport
16682	Pittsburgh
16683 16684	Williamsport
16685	Williamsport
16686	Harrisburg Williamsport
16689	
16691	Harrisburg Harrisburg
16692	0
	Pittsburgh Harrisburg
16693	
16694	Harrisburg
16695	Harrisburg
16698	Williamsport
16699	Pittsburgh
16701	Erie
16720 16724	Williamsport
	Williamsport
16725	Erie
16726	Erie
16727 16728	Erie Erie
16729	Erie Erie
16730	
16731	Williamsport Williamsport
16732	Erie
16733	Erie
16734	Erie
16735	Erie
	Erie
16738 16740	Erie
16743	Williamsport
16744	Erie
16745	Erie
16746	Williamsport
16748	Williamsport
16749	Williamsport
16750	
16801	Williamsport
	Williamsport
16802 16803	Williamsport Williamsport
16804	Williamsport
16805 16820	Williamsport
	Williamsport
16821	Williamsport

Zip	Reference City
16822	Williamsport
16823	Williamsport
16825	Williamsport
16826	Williamsport
16827	Williamsport
16828	Williamsport
16829	Williamsport
16830	Williamsport
16832	Williamsport
16833	Williamsport
16834	Williamsport
16835	Williamsport
16836	Williamsport
16837	Williamsport
16838	Pittsburgh
16839	Williamsport
16840	Williamsport
16841	Williamsport
16843	Williamsport
16844	Williamsport
16845	Williamsport
16847	Williamsport
16848	Williamsport
16849	Williamsport
16850	Williamsport
16851	Williamsport
16852	Williamsport
16853	Williamsport
16854	Williamsport
16855	Williamsport
16856	Williamsport
16858	Williamsport
16859	Williamsport
16860	Williamsport
16861	Williamsport
16863	Williamsport
16864	Williamsport
16865	Williamsport
16866	Williamsport
16868	Williamsport
16870	Williamsport
16871	Williamsport
16872	Williamsport
16873	Williamsport
16874	Williamsport
16875	Williamsport
16876	Williamsport

	T
Zip	Reference City
16877	Williamsport
16878	Williamsport
16879	Williamsport
16881	Williamsport
16882	Williamsport
16901	Williamsport
16910	Williamsport
16911	Williamsport
16912	Williamsport
16914	Williamsport
16915	Williamsport
16917	Williamsport
16918	Williamsport
16920	Williamsport
16921	Williamsport
16922	Williamsport
16923	Williamsport
16925	Williamsport
16926	Williamsport
16927	Williamsport
16928	Williamsport
16929	Williamsport
16930	Williamsport
16932	Williamsport
16933	Williamsport
16935	Williamsport
16936	Williamsport
16937	Williamsport
16938	Williamsport
16939	Williamsport
16940	Williamsport
16941	Williamsport
16942	Williamsport
16943	Williamsport
16945	Williamsport
16946	Williamsport
16947	Williamsport
16948	Williamsport
16950	Williamsport
17001	Harrisburg
17002	Harrisburg
17003	Harrisburg
17004	Harrisburg
17005	Harrisburg
17006	Harrisburg
17007	Harrisburg
17008	Harrisburg

Zip	Reference City
17009	Harrisburg
17010	Harrisburg
17011	Harrisburg
17012	Harrisburg
17013	Harrisburg
17014	Harrisburg
17015	Harrisburg
17016	Harrisburg
17017	Harrisburg
17018	Harrisburg
17019	Philadelphia
17020	Harrisburg
17021	Harrisburg
17022	Harrisburg
17023	Harrisburg
17024	Harrisburg
17025	Harrisburg
17026	Harrisburg
17027	Harrisburg
17028	Harrisburg
17029	Harrisburg
17030	Harrisburg
17032	Harrisburg
17033	Harrisburg
17034	Harrisburg
17035	Harrisburg
17036	Harrisburg
17037	Harrisburg
17038	Harrisburg
17039	Harrisburg
17040	Harrisburg
17041	Harrisburg
17042	Harrisburg
17043	Harrisburg
17044	Harrisburg
17045	Harrisburg
17046	Harrisburg
17047	Harrisburg
17048	Harrisburg
17049	Harrisburg
17050	Harrisburg
17051	Harrisburg
17052	Harrisburg
17052	Harrisburg
17054	Harrisburg
17055	Harrisburg
17000	

Zip	Reference City
17057	Harrisburg
17058	Harrisburg
17059	Harrisburg
17060	Harrisburg
17061	Harrisburg
17062	Harrisburg
17063	Williamsport
17064	Harrisburg
17065	Harrisburg
17066	Harrisburg
17067	Harrisburg
17068	Harrisburg
17069	Harrisburg
17070	Harrisburg
17071	Harrisburg
17072	Harrisburg
17073	Harrisburg
17074	Harrisburg
17075	Harrisburg
17076	Harrisburg
17077	Harrisburg
17078	Harrisburg
17080	Harrisburg
17081	Harrisburg
17082	Harrisburg
17083	Harrisburg
17084	Williamsport
17085	Harrisburg
17086	Harrisburg
17087	Harrisburg
17088	Harrisburg
17089	Harrisburg
17090	Harrisburg
17091	Harrisburg
17093	Harrisburg
17094	Harrisburg
17097	Harrisburg
17098	Harrisburg
17099	Harrisburg
17101	Harrisburg
17102	Harrisburg
17103	Harrisburg
17104	Harrisburg
17105	Harrisburg
17106	Harrisburg
17107	Harrisburg
17108	Harrisburg

Harrisburg

Zip	Reference City
17109	Harrisburg
17110	Harrisburg
17111	Harrisburg
17112	Harrisburg
17113	Harrisburg
17120	Harrisburg
17121	Harrisburg
17122	Harrisburg
17123	Harrisburg
17124	Harrisburg
17125	Harrisburg
17126	Harrisburg
17127	Harrisburg
17128	Harrisburg
17129	Harrisburg
17130	Harrisburg
17140	Harrisburg
17177	Harrisburg
17201	Harrisburg
17202	Harrisburg
17210	Harrisburg
17211	Harrisburg
17212	Harrisburg
17213	Harrisburg
17214	Harrisburg
17215	Harrisburg
17217	Harrisburg
17219	Harrisburg
17220	Harrisburg
17221	Harrisburg
17222	Harrisburg
17223	Harrisburg
17224	Harrisburg
17225	Harrisburg
17228	Harrisburg
17229	Harrisburg
17231	Harrisburg
17232	Harrisburg
17233	Harrisburg
17235	Harrisburg
17236	Harrisburg
17237	Harrisburg
17238	Harrisburg
17239	Harrisburg
17240	Harrisburg
17241	Harrisburg
17243	Harrisburg

Zip	Reference City
17244	Harrisburg
17246	Harrisburg
17247	Harrisburg
17249	Harrisburg
17250	Harrisburg
17251	Harrisburg
17252	Harrisburg
17253	Harrisburg
17254	Harrisburg
17255	Harrisburg
17256	Harrisburg
17257	Harrisburg
17260	Harrisburg
17261	Harrisburg
17262	Harrisburg
17263	Harrisburg
17264	Harrisburg
17265	Harrisburg
17266	Harrisburg
17267	Harrisburg
17268	Harrisburg
17270	Harrisburg
17271	Harrisburg
17272	Harrisburg
17301	Harrisburg
17302	Philadelphia
17303	Harrisburg
17304	Harrisburg
17306	Harrisburg
17307	Harrisburg
17309	Philadelphia
17310	Harrisburg
17311	Philadelphia
17312	Philadelphia
17313	Philadelphia
17314	Philadelphia
17315	Philadelphia
17316	Harrisburg
17317	Philadelphia
17318	Philadelphia
17319	Philadelphia
17320	Harrisburg
17321	Philadelphia
17322	Philadelphia
17323	Philadelphia
17324	Harrisburg
17325	Harrisburg

7in	Deference City
Zip	Reference City
17326	Harrisburg
17327	Philadelphia
17329	Philadelphia
17331	Philadelphia
17332	Philadelphia
17333	Philadelphia
17334	Philadelphia
17337	Harrisburg
17339	Philadelphia
17340	Harrisburg
17342	Philadelphia
17343	Harrisburg
17344	Harrisburg
17345	Philadelphia
17347	Philadelphia
17349	Philadelphia
17350	Harrisburg
17352	Philadelphia
17353	Harrisburg
17354	Philadelphia
17355	Philadelphia
17356	Philadelphia
17358	Philadelphia
17360	Philadelphia
17361	Philadelphia
17362	Philadelphia
17363	Philadelphia
17364	Philadelphia
17365	Philadelphia
17366	Philadelphia
17368	Philadelphia
17370	Philadelphia
17371	Philadelphia
17372	Harrisburg
17375	Harrisburg
17401	Philadelphia
17402	Philadelphia
17403	Philadelphia
17404	Philadelphia
17405	Philadelphia
17406	Philadelphia
17407	Philadelphia
17408	Philadelphia
17415	Philadelphia
17501	Harrisburg
17502	Harrisburg
17503	Harrisburg

Zip	Reference City
17504	Harrisburg
17505	Harrisburg
17506	Harrisburg
17507	Allentown
17508	Harrisburg
17509	Harrisburg
17512	Harrisburg
17516	Harrisburg
17517	Harrisburg
17518	Harrisburg
17519	Allentown
17520	Harrisburg
17521	Harrisburg
17522	Harrisburg
17527	Harrisburg
17528	Allentown
17529	Harrisburg
17532	Harrisburg
17533	Harrisburg
17534	Harrisburg
17535	Harrisburg
17536	Harrisburg
17537	Harrisburg
17538	Harrisburg
17540	Harrisburg
17543	Harrisburg
17545	Harrisburg
17547	Harrisburg
17549	Harrisburg
17550	Harrisburg
17551	Harrisburg
17552	Harrisburg
17554	Harrisburg
17555	Allentown
17557	Harrisburg
17560	Harrisburg
17562	Harrisburg
17563	Harrisburg
17564	Harrisburg
17565	Harrisburg
17566	Harrisburg
17567	Harrisburg
17568	Harrisburg
17569	Harrisburg
17570	Harrisburg
17572	Harrisburg
17573	Harrisburg

Zip	Reference City
17575	Harrisburg
17576	Harrisburg
17577	Harrisburg
17578	Harrisburg
17579	Harrisburg
17579	Harrisburg
17581	Allentown
17582	Harrisburg
17583	Harrisburg
17584	Harrisburg
17585	Harrisburg
17601	Harrisburg
17602	Harrisburg
17603	Harrisburg
17604	Harrisburg
17605	Harrisburg
17606	Harrisburg
17607	Harrisburg
17608	Harrisburg
17611	Harrisburg
17622	Harrisburg
17699	Harrisburg
17701	Williamsport
17702	Williamsport
17703	Williamsport
17705	Williamsport
17720	Williamsport
17721	Williamsport
17722	Williamsport
17723	Williamsport
17724	Williamsport
17726	Williamsport
17727	Williamsport
17728	Williamsport
17729	Williamsport
17730	Williamsport
17731	Williamsport
17735	Williamsport
17737	Williamsport
17738	Williamsport
17739	Williamsport
17740	Williamsport
17742 17744	Williamsport Williamsport
17744	Williamsport
17745	Williamsport
17748	Williamsport
111-40	vviiiiaiiispoit

Zip	Reference City
17749	Williamsport
17750	Williamsport
17751	Williamsport
17752	Williamsport
17754	Williamsport
17756	Williamsport
17758	Williamsport
17759	Williamsport
17760	Williamsport
17762	Williamsport
17763	Williamsport
17764	Williamsport
17765	Williamsport
17767	Williamsport
17768	Williamsport
17769	Williamsport
17771	Williamsport
17772	Williamsport
17773	Williamsport
17774	Williamsport
17776	Williamsport
17777	Williamsport
17778	Williamsport
17779	Williamsport
17801	Williamsport
17810	Williamsport
17812	Williamsport
17813	Williamsport
17814	Williamsport
17815	Williamsport
17820	Williamsport
17821	Williamsport
17822	Williamsport
17823	Harrisburg
17824	Williamsport
17827	Williamsport
17829	Williamsport
17830	Harrisburg
17831	Williamsport
17832	Williamsport
17833	Williamsport
17834	Harrisburg
17835	Williamsport
17836	Harrisburg
17837	Williamsport
17839	Williamsport
17840	Harrisburg

Zip	Reference City
17841	Williamsport
17842	Williamsport
17843	Williamsport
17844	Williamsport
17845	Williamsport
17846	Williamsport
17847	Williamsport
17850	Williamsport
17851	Harrisburg
17853	Harrisburg
17855	Williamsport
17856	Williamsport
17857	Williamsport
17858	Williamsport
17859	Williamsport
17860	Williamsport
17861	Williamsport
17862	Williamsport
17864	Harrisburg
17865	Williamsport
17866	Harrisburg
17867	Harrisburg
17868	Williamsport
17870	Williamsport
17872	Harrisburg
17876	Williamsport
17877	Williamsport
17878	Williamsport
17880	Williamsport
17881	Williamsport
17882	Williamsport
17883	Williamsport
17884	Williamsport
17885	Williamsport
17886	Williamsport
17887	Williamsport
17888	Williamsport
17889	Williamsport
17901	Allentown
17920	Williamsport
17921	Harrisburg
17922	Allentown
17923	Harrisburg
17925	Allentown
17929	Allentown
17930	Allentown
17931	Allentown

Zip	Reference City
17932	Allentown
17933	Allentown
17934	Allentown
17935	Allentown
17936	Harrisburg
17938	Harrisburg
17941	Harrisburg
17942	Allentown
17943	Harrisburg
17944	Harrisburg
17945	Allentown
17946	Allentown
17948	Allentown
17949	Allentown
17951	Allentown
17952	Allentown
17953	Allentown
17954	Allentown
17957	Harrisburg
17959	Allentown
17960	Allentown
17961	Allentown
17963	Harrisburg
17964	Harrisburg
17965	Allentown
17966	Harrisburg
17967	Allentown
17968	Harrisburg
17970	Allentown
17972	Allentown
17974	Allentown
17976	Allentown
17978	Harrisburg
17979	Allentown
17980	Harrisburg
17981	Harrisburg
17982	Allentown
17983	Harrisburg
17985	Allentown
18001	Allentown
18002	Allentown
18003	Allentown
18010	Allentown
18011	Allentown
18012	Allentown
18013	Allentown
18014	Allentown

Zip	Reference City
18015	Allentown
18016	Allentown
18017	Allentown
18018	Allentown
18020	Allentown
18025	Allentown
18030	Allentown
18031	Allentown
18032	Allentown
18034	Allentown
18035	Allentown
18036	Allentown
18037	Allentown
18038	Allentown
18039	Philadelphia
18040	Allentown
18041	Philadelphia
18042	Allentown
18043	Allentown
18044	Allentown
18045	Allentown
18046	Allentown
18049	Allentown
18050	Allentown
18051	Allentown
18052	Allentown
18053	Allentown
18054	Philadelphia
18055	Allentown
18056	Allentown
18058	Allentown
18059	Allentown
18060	Allentown
18062	Allentown
18063	Allentown
18064	Allentown
18065	Allentown
18066	Allentown
18067	Allentown
18068	Allentown
18069	Allentown
18070	Philadelphia
18071	Allentown
18072	Allentown
18073	Philadelphia
18074	Philadelphia
18076	Philadelphia

Zip	Reference City
18077	Philadelphia
18078	Allentown
18079	Allentown
18080	Allentown
18081	Philadelphia
18083	Allentown
18084	Philadelphia
18085	Allentown
18086	Allentown
18087	Allentown
18088	Allentown
18091	Allentown
18092	Allentown
18098	Allentown
18099	Allentown
18101	Allentown
18102	Allentown
18103	Allentown
18104	Allentown
18105	Allentown
18106	Allentown
18109	Allentown
18175	Allentown
18195	Allentown
18201	Scranton
18202	Scranton
18210	Scranton
18211	Allentown
18212	Allentown
18214	Allentown
18216	Allentown
18218	Allentown
18219	Scranton
18220	Allentown
18221	Scranton
18222	Scranton
18223	Scranton
18224	Scranton
18225	Scranton
18229	Allentown
18230	Allentown
18231	Allentown
18232	Allentown
18234	Scranton
18235	Allentown
18237	Allentown
18239	Scranton

Zip	Reference City
18240	Allentown
18241	Allentown
18242	Allentown
18244	Allentown
18245	Allentown
18246	Scranton
18247	Scranton
18248	Allentown
18249	Scranton
18250	Allentown
18251	Scranton
18252	Allentown
18254	Allentown
18255	Allentown
18256	Allentown
18301	Scranton
18302	Scranton
18320	Scranton
18321	Scranton
18322	Allentown
18323	Scranton
18324	Scranton
18325	Scranton
18326	Scranton
18327	Allentown
18328	Scranton
18330	Allentown
18331	Allentown
18332	Scranton
18333	Allentown
18334	Scranton
18335	Scranton
18336	Scranton
18337	Scranton
18340	Scranton
18341	Allentown
18342	Scranton
18343	Allentown
18344	Scranton
18346	Scranton
18347	Scranton
18348	Scranton
18349	Scranton
18350	Scranton
18351	Allentown
18352	Allentown
18353	Allentown

Zip Reference City 18354 Allentown 18355 Scranton 18356 Allentown 18357 Scranton 18360 Allentown 18370 Scranton 18371 Scranton 18372 Scranton 18373 Scranton 18401 Scranton 18403 Scranton 18404 Scranton 18405 Scranton 18406 Scranton 18417 Scranton 18418 Scranton 18419 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18418 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18430 Scranton 18431 Scranton 18432 Scranton <th></th> <th></th>		
18355 Scranton 18356 Allentown 18357 Scranton 18360 Allentown 18370 Scranton 18371 Scranton 18372 Scranton 18373 Scranton 18401 Scranton 18403 Scranton 18404 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18412 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18428 Scranton 18429 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18430 Scranton 18431 Scranton 18433 Scranton	Zip	Reference City
18356 Allentown 18357 Scranton 18360 Allentown 18370 Scranton 18371 Scranton 18372 Scranton 18401 Scranton 18403 Scranton 18404 Scranton 18405 Scranton 18406 Scranton 18410 Scranton 18411 Scranton 18412 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18418 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton	18354	Allentown
18357 Scranton 18360 Allentown 18370 Scranton 18371 Scranton 18372 Scranton 18373 Scranton 18401 Scranton 18403 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18412 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18418 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton	18355	Scranton
18360 Allentown 18370 Scranton 18371 Scranton 18372 Scranton 18373 Scranton 18401 Scranton 18403 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18412 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18418 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton	18356	Allentown
18370 Scranton 18371 Scranton 18372 Scranton 18373 Scranton 18401 Scranton 18403 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18418 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18428 Scranton 18439 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton	18357	Scranton
18371 Scranton 18372 Scranton 18401 Scranton 18403 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18418 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton	18360	Allentown
18372 Scranton 18373 Scranton 18401 Scranton 18403 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18439 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton		Scranton
18373 Scranton 18401 Scranton 18403 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18439 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18443 Scranton	18371	Scranton
18401 Scranton 18403 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18439 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18440 Scranton	18372	Scranton
18403 Scranton 18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18439 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18443 Scranton 18444 Scranton 18443 Scranton	18373	Scranton
18405 Scranton 18407 Scranton 18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18449 Scranton 18441 Scranton 18442 Scranton 18443 Scranton	18401	Scranton
18407 Scranton 18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton	18403	Scranton
18410 Scranton 18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18422 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18443 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton	18405	Scranton
18411 Scranton 18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton		Scranton
18413 Scranton 18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton <td>18410</td> <td>Scranton</td>	18410	Scranton
18414 Scranton 18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18449 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18411	Scranton
18415 Scranton 18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18423 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18438 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18413	Scranton
18416 Scranton 18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18449 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18414	Scranton
18417 Scranton 18419 Scranton 18420 Scranton 18421 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18449 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18415	Scranton
18419 Scranton 18420 Scranton 18421 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18449 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18416	Scranton
18420 Scranton 18421 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18417	Scranton
18421 Scranton 18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18419	Scranton
18424 Scranton 18425 Scranton 18426 Scranton 18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18420	Scranton
18425 Scranton 18426 Scranton 18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18421	Scranton
18426 Scranton 18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18424	Scranton
18427 Scranton 18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18425	Scranton
18428 Scranton 18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18426	Scranton
18430 Scranton 18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18427	Scranton
18431 Scranton 18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18428	Scranton
18433 Scranton 18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18430	Scranton
18434 Scranton 18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18431	Scranton
18435 Scranton 18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18433	Scranton
18436 Scranton 18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18434	Scranton
18437 Scranton 18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18435	Scranton
18438 Scranton 18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18436	Scranton
18439 Scranton 18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18437	Scranton
18440 Scranton 18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18438	Scranton
18441 Scranton 18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18439	Scranton
18443 Scranton 18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18440	Scranton
18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18441	Scranton
18444 Scranton 18445 Scranton 18446 Scranton 18447 Scranton 18448 Scranton	18443	Scranton
18446 Scranton 18447 Scranton 18448 Scranton	18444	
18447 Scranton 18448 Scranton	18445	Scranton
18448 Scranton	18446	Scranton
	18447	Scranton
18449 Scranton	18448	Scranton
	18449	Scranton

Scranton

18451

Zip	Reference City
18452	Scranton
18453	Scranton
18454	Scranton
18455	Scranton
18456	Scranton
18457	Scranton
18458	Scranton
18459	Scranton
18460	Scranton
18461	Scranton
18462	Scranton
18463	Scranton
18464	Scranton
18465	Scranton
18466	Scranton
18469	Scranton
18470	Scranton
18471	Scranton
18472	Scranton
18473	Scranton
18501	Scranton
18502	Scranton
18503	Scranton
18504	Scranton
18505	Scranton
18507	Scranton
18508	Scranton
18509	Scranton
18510	Scranton
18512	Scranton
18514	Scranton
18515	Scranton
18517	Scranton
18518	Scranton
18519	Scranton
18522	Scranton
18540	Scranton
18577	Scranton
18601	Scranton
18602	Scranton
18603	Scranton
18610	Scranton
18611	Williamsport
18612	Scranton
18614	Williamsport
18615	Scranton
18616	
18616	Williamsport

18617 Scranton 18618 Scranton 18619 Williamsport 18621 Scranton 18622 Scranton 18623 Scranton 18624 Scranton 18625 Scranton 18626 Williamsport 18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18633 Scranton 18634 Scranton 18635 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18660 Scranton 18670 Scranton 18701 Scranton 18702 Scranton <th>Zip</th> <th>Reference City</th>	Zip	Reference City
18619 Williamsport 18621 Scranton 18622 Scranton 18623 Scranton 18624 Scranton 18625 Scranton 18626 Williamsport 18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18633 Scranton 18634 Scranton 18635 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18701 Scranton 18702 Scranton 18703 Scranton <td>18617</td> <td>Scranton</td>	18617	Scranton
18621 Scranton 18622 Scranton 18623 Scranton 18624 Scranton 18625 Scranton 18626 Williamsport 18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18633 Scranton 18634 Scranton 18635 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18670 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton	18618	Scranton
18621 Scranton 18622 Scranton 18623 Scranton 18624 Scranton 18625 Scranton 18626 Williamsport 18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18633 Scranton 18634 Scranton 18635 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18670 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton	18619	Williamsport
18622 Scranton 18623 Scranton 18624 Scranton 18625 Scranton 18626 Williamsport 18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18634 Scranton 18635 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton	18621	
18624 Scranton 18625 Scranton 18626 Williamsport 18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18634 Scranton 18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton		
18625 Scranton 18626 Williamsport 18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18634 Scranton 18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18654 Scranton 18655 Scranton 18654 Scranton 18655 Scranton 18660 Scranton 18661 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18761 Scranton	18623	Scranton
18626 Williamsport 18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18634 Scranton 18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18654 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18671 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18761 Scranton	18624	Scranton
18627 Scranton 18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18633 Scranton 18634 Scranton 18635 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18654 Scranton 18655 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton </td <td>18625</td> <td>Scranton</td>	18625	Scranton
18628 Scranton 18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18634 Scranton 18635 Scranton 18636 Scranton 18637 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18661 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton </td <td>18626</td> <td>Williamsport</td>	18626	Williamsport
18629 Scranton 18630 Scranton 18631 Williamsport 18632 Williamsport 18634 Scranton 18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18627	Scranton
18630 Scranton 18631 Williamsport 18632 Williamsport 18634 Scranton 18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18628	Scranton
18631 Williamsport 18632 Williamsport 18634 Scranton 18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18629	Scranton
18632 Williamsport 18634 Scranton 18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18630	Scranton
18634 Scranton 18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18631	Williamsport
18635 Scranton 18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18632	
18636 Scranton 18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18634	Scranton
18640 Scranton 18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18635	Scranton
18641 Scranton 18642 Scranton 18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18636	Scranton
18642 Scranton 18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18640	Scranton
18643 Scranton 18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18762 Scranton 18763 Scranton		Scranton
18644 Scranton 18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18642	Scranton
18651 Scranton 18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18691 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18762 Scranton 18763 Scranton	18643	Scranton
18653 Scranton 18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18661 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18644	Scranton
18654 Scranton 18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18661 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18762 Scranton 18763 Scranton	18651	Scranton
18655 Scranton 18656 Scranton 18657 Scranton 18660 Scranton 18661 Scranton 18690 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18653	Scranton
18656 Scranton 18657 Scranton 18660 Scranton 18661 Scranton 18690 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		Scranton
18657 Scranton 18660 Scranton 18661 Scranton 18690 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18762 Scranton 18763 Scranton	18655	Scranton
18660 Scranton 18661 Scranton 18690 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		Scranton
18661 Scranton 18690 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		
18690 Scranton 18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		Scranton
18701 Scranton 18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		Scranton
18702 Scranton 18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		Scranton
18703 Scranton 18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		
18704 Scranton 18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		
18705 Scranton 18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		
18706 Scranton 18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		
18707 Scranton 18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		
18708 Scranton 18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		
18709 Scranton 18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton	18707	Scranton
18710 Scranton 18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		Scranton
18711 Scranton 18761 Scranton 18762 Scranton 18763 Scranton		Scranton
18761 Scranton 18762 Scranton 18763 Scranton		
18762 Scranton 18763 Scranton		
18763 Scranton		
18764 Scranton		
	18764	Scranton

Zip	Reference City
18765	Scranton
18766	Scranton
18767	Scranton
18768	Scranton
18769	Scranton
18773	Scranton
18774	Scranton
18801	Scranton
18810	Williamsport
18812	Scranton
18813	Scranton
18814	Williamsport
18815	Scranton
18816	Scranton
18817	Williamsport
18818	Scranton
18820	Scranton
18821	Scranton
18822	Scranton
18823	Scranton
18824	Scranton
18825	Scranton
18826	Scranton
18827	Scranton
18828	Scranton
18829	Scranton
18830	Scranton
18831	Williamsport
18832	Williamsport
18833	Williamsport
18834	Scranton
18837	Scranton
18840	Williamsport
18842	Scranton
18843	Scranton
18844	Scranton
18845	Scranton
18846	Scranton
18847	Scranton
18848	Williamsport
18850	Williamsport
18851	Scranton
18853	Scranton
18854	Scranton
18901	Philadelphia
18902	Philadelphia
18910	Philadelphia

Zip	Reference City
18911	Philadelphia
18912	Philadelphia
18913	Philadelphia
18914	Philadelphia
18915	Philadelphia
18916	Philadelphia
18917	Philadelphia
18918	Philadelphia
18920	Philadelphia
18921	Philadelphia
18922	Philadelphia
18923	Philadelphia
18924	Philadelphia
18925	Philadelphia
18926	Philadelphia
18927	Philadelphia
18928	Philadelphia
18929	Philadelphia
18930	Philadelphia
18931	Philadelphia
18932	Philadelphia
18933	Philadelphia
18934	Philadelphia
18935	Philadelphia
18936	Philadelphia
18938	Philadelphia
18940	Philadelphia
18942	Philadelphia
18943	Philadelphia
18944	Philadelphia
18946	Philadelphia
18947	Philadelphia
18949	Philadelphia
18950	Philadelphia
18951	Philadelphia
18953	Philadelphia
18954	Philadelphia
18955	
	Philadelphia Philadelphia
18956 18957	Philadelphia
18958 18960	Philadelphia Philadelphia
18962	Philadelphia Philadelphia
18963	Philadelphia Philadelphia
18963	Philadelphia Philadelphia
i	Philadelphia
18966	Philadelphia
18968	Philadelphia

Zip	Reference City
18969	Philadelphia
18970	Philadelphia
18971	Philadelphia
18972	Philadelphia
18974	Philadelphia
18976	Philadelphia
18977	Philadelphia
18979	Philadelphia
18980	Philadelphia
18981	Philadelphia
18991	Philadelphia
19001	Philadelphia
19002	Philadelphia
19003	Philadelphia
19004	Philadelphia
19006	Philadelphia
19007	Philadelphia
19008	Philadelphia
19009	Philadelphia
19010	Philadelphia
19012	Philadelphia
19013	Philadelphia
19014	Philadelphia
19015	Philadelphia
19016	Philadelphia
19017	Philadelphia
19018	Philadelphia
19019	Philadelphia
19020	Philadelphia
19021	Philadelphia
19022	Philadelphia
19023	Philadelphia
19025	Philadelphia
19026	Philadelphia
19027	Philadelphia
19028	Philadelphia
19029	Philadelphia
19030	Philadelphia
19031	Philadelphia
19032	Philadelphia
19033	Philadelphia
19034	Philadelphia
19035	Philadelphia
19036	Philadelphia
19037	Philadelphia
19038	Philadelphia
· · · · · · · · · · · · · · · · · · ·	

Zip	Reference City
19040	Philadelphia
19041	Philadelphia
19043	Philadelphia
19044	Philadelphia
19046	Philadelphia
19047	Philadelphia
19048	Philadelphia
19049	Philadelphia
19050	Philadelphia
19052	Philadelphia
19053	Philadelphia
19054	Philadelphia
19055	Philadelphia
19056	Philadelphia
19057	Philadelphia
19058	Philadelphia
19059	Philadelphia
19060	Philadelphia
19061	Philadelphia
19063	Philadelphia
19064	Philadelphia
19065	Philadelphia
19066	Philadelphia
19067	Philadelphia
19070	Philadelphia
19072	Philadelphia
19073	Philadelphia
19074	Philadelphia
19075	Philadelphia
19076	Philadelphia
19078	Philadelphia
19079	Philadelphia
19080	Philadelphia
19081	Philadelphia
19082	Philadelphia
19083	Philadelphia
19085	Philadelphia
19086	Philadelphia
19087	Philadelphia
19088	Philadelphia
19089	Philadelphia
19090	Philadelphia
19091	Philadelphia
19092	Philadelphia
19093	Philadelphia
19094	Philadelphia
19095	Philadelphia

Philadelphia

Zip	Reference City
19146	Philadelphia
19147	Philadelphia
19148	Philadelphia
19149	Philadelphia
19150	Philadelphia
19151	Philadelphia
19152	Philadelphia
19153	Philadelphia
19154	Philadelphia
19155	Philadelphia
19160	Philadelphia
19161	Philadelphia
19162	Philadelphia
19170	Philadelphia
19171	Philadelphia
19172	Philadelphia
19173	Philadelphia
19175	Philadelphia
19176	Philadelphia
19177	Philadelphia
19178	Philadelphia
19179	Philadelphia
19181	Philadelphia
19182	Philadelphia
19183	Philadelphia
19184	Philadelphia
19185	Philadelphia
19187	Philadelphia
19188	Philadelphia
19190	Philadelphia
19191	Philadelphia
19192	Philadelphia
19193	Philadelphia
19194	Philadelphia
19195	Philadelphia
19196	Philadelphia
19197	Philadelphia
19244	Philadelphia
19255	Philadelphia
19301	Philadelphia
19310	Philadelphia
19311	Philadelphia
19312	Philadelphia
19316	Philadelphia
19317	Philadelphia
19318	Philadelphia
10010	DIT LILE

Zip	Reference City
19320	Philadelphia
19330	Philadelphia
19331	Philadelphia
19333	Philadelphia
19335	Philadelphia
19339	Philadelphia
19340	Philadelphia
19341	Philadelphia
19342	Philadelphia
19343	Philadelphia
19344	Philadelphia
19345	Philadelphia
19346	Philadelphia
19347	Philadelphia
19348	Philadelphia
19350	Philadelphia
19351	Philadelphia
19352	Philadelphia
19353	Philadelphia
19354	Philadelphia
19355	Philadelphia
19357	Philadelphia
19358	Philadelphia
19360	Philadelphia
19362	Philadelphia
19363	Philadelphia
19365	Philadelphia
19366	Philadelphia
19367	Philadelphia
19369	Philadelphia
19371	Philadelphia
19372	Philadelphia
19373	Philadelphia
19374	Philadelphia
19375	Philadelphia
19376	Philadelphia
19380	Philadelphia
19381	Philadelphia
19382	Philadelphia
19383	Philadelphia
19388	Philadelphia
19390	Philadelphia
19395	Philadelphia
19397	Philadelphia
19398	Philadelphia
19399	Philadelphia
19401	Philadelphia

Philadelphia

Zip	Reference City
19403	Philadelphia
19404	Philadelphia
19405	Philadelphia
19406	Philadelphia
19407	Philadelphia
19408	Philadelphia
19409	Philadelphia
19415	Philadelphia
19420	Philadelphia
19421	Philadelphia
19422	Philadelphia
19423	Philadelphia
19424	Philadelphia
19425	Philadelphia
19426	Philadelphia
19428	Philadelphia
19429	Philadelphia
19430	Philadelphia
19432	Philadelphia
19435	Philadelphia
19436	Philadelphia
19437	Philadelphia
19438	Philadelphia
19440	Philadelphia
19441	Philadelphia
19442	Philadelphia
19443	Philadelphia
19444	Philadelphia
19446	Philadelphia
19450	Philadelphia
19451	Philadelphia
19453	Philadelphia
19454	Philadelphia
19455	Philadelphia
19456	Philadelphia
19457	Philadelphia
19460	Philadelphia
19462	Philadelphia
19464	Philadelphia
19465	Philadelphia
19468	Philadelphia
19470	Philadelphia

Zip	Reference City
19472	Philadelphia
19473	Philadelphia
19474	Philadelphia
19475	Philadelphia
19477	Philadelphia
19478	Philadelphia
19480	Philadelphia
19481	Philadelphia
19482	Philadelphia
19483	Philadelphia
19484	Philadelphia
19485	Philadelphia
19486	Philadelphia
19487	Philadelphia
19488	Philadelphia
19489	Philadelphia
19490	Philadelphia
19492	Philadelphia
19493	Philadelphia
19494	Philadelphia
19495	Philadelphia
19496	Philadelphia
19501	Allentown
19503	Allentown
19504	Allentown
19505	Allentown
19506	Allentown
19507	Harrisburg
19508	Allentown
19510	Allentown
19511	Allentown
19512	Allentown
19516	Allentown
19518	Allentown
19519	Allentown
19520	Philadelphia
19522	Allentown
19523	Allentown
19525	Philadelphia
19526	Allentown
19529	Allentown

Allentown

Zip 19533 19534 19535	Allentown Allentown
19534	Allentown
19535	
40500	Allentown
19536	Allentown
19538	Allentown
19539	Allentown
19540	Allentown
19541	Allentown
19542	Allentown
19543	Allentown
19544	Harrisburg
19545	Allentown
19547	Allentown
19548	Allentown
19549	Allentown
19550	Harrisburg
19551	Allentown
19554	Allentown
19555	Allentown
19557	Allentown
19559	Allentown
19560	Allentown
19562	Allentown
19564	Allentown
19565	Allentown
19567	Harrisburg
19601	Allentown
19602	Allentown
19603	Allentown
19604	Allentown
19605	Allentown
19606	Allentown
19607	Allentown
19608	Allentown
19609	Allentown
19610	Allentown
19611	Allentown
19612	Allentown
19640	Allentown