

APPENDIX I

TYPICAL YEAR RAIN HYETOGRAPH

APPENDIX J

INFOSWMM TYPICAL YEAR MODEL REPORT

Typical_Year_Model_Report

Comprehensive Storm Water Management Model: based on EPA-SWMM 5.0.022

Warning 08: elevation drop 17.616 exceeds length 16.068 for Conduit CSO_OVERFLOW Needed length: 17.616000 ft

Periods

Malfunc.

0

Rainfall File Summary Station First Last Recording Periods Periods ID Date Date Frequency w/Precip Missina RG-324381S012 DEC-21-2002 DEC-30-2003 15 min 1479 0 ***** Volume Volume Rainfall Dependent I/I acre-feet 10^6 gal Sewershed Rainfall 1940.983 632.498 RDII Produced RDII Ratio 504.005 164.238 0.260

************************** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

************* Analysis Options Flow Units MGD Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Water Quality NO Flow Routing Method DYNWAVE Starting Date DEC-28-2002 00:00:00 Ending Date JAN-01-2004 00:00:00 Antecedent Dry Days 5.0 Report Time Step 00:15:00 Routing Time Step 1.00 sec

*****	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow External Inflow External Outflow Internal Outflow	$1136.535 \\ 0.000 \\ 0.000 \\ 504.006 \\ 0.000 \\ 1633.636 \\ 0.000 \\ 0.00$	370.357 0.000 0.000 164.238 0.000 532.345 0.000
Storage Losses Initial Stored Volume Final Stored Volume	0.000 0.000 0.075 Page 1	0.000 0.000 0.024

Continuity Error (%)

***** Highest Continuity Errors Node DU2003.1M Node DU2001M Node DU2003M Node DU2002M Node DU2005M Node JCT-38 Node DU6177S Node DU2631M Node DU4004M Node DU2632M Node DU1004M Node DU4003M Node DU1010M Node DU3097M Node DU2834M Node CSO-4 Node CSO-3 Node DU3107M Node DU1016M Node DU3168M ******* Time-Step Critical Elements Link DU2001M-DU2003.1M (64.62%) Link DU2003M-DU2002M (4.96%) Link CDT-67 (2.70%) Link CDT-67 (2.70%) Link CSO_OVERFLOW (0.39%) Link DU1003M-DU1002M (0.09%) Link DU2633M-DU2634M (0.05%) Link DU2633M-DU2634M (0.05%) Link DU3155M-DU3156M (0.00%) Link DU3155M-DU3156M (0.00%) Link DU3156M-DU1016M (0.00%) Link DU3156M-DU1016M (0.00%) Link DU3156M-DU3156M (0.00%) Link DU3156M-DU3156M (0.00%) Link DU6028M-DU3156M (0.00%) Link DU6028M-DU3156M (0.00%) Link DU6028M-DU3156M (0.00%) Link DU7001.1M-DU7001M (0.00%) Link DU6177S-CS030UTFALL (0.00%) Node DU2632.1M (0.00%) Node DU2632.1M (0.00%) Node DU7002M (0.00%) Link DU7001.2M-DU7001.1M (0.00%) Link DU6177S-DU3157M (0.00%)

Highest Flow Instability Indexes Highest Flow Instability Indexes Link DU2003.1M-DU2003M (38) Link DU2001M-DU2003.1M (23) Link DU2003M-DU2002M (23) Link DU2002M-DU2834M (21) Link DU2005M-DU2001M (21) Link DU2631M-DU2632M (0)

-3.13% 2.75% 1.89% -11.7581 10.6164 6.3484 -1.80% -5.9279 2.9112 1.14% -0.22% -0.0834 0.05% 0.0071 0.04% 0.0146 0.02% 0.0121 -0.02% -0.0069 0.0435 0.01% -0.01% 0.01% 0.0313 0.01% 0.0032 0.0118 0.00% -0.00% 0.00% 0.0045 -0.00% -0.0014 0.0071 0.00% 0.00% 2.2300 Mgal

Page 2

Link TO_WWTP (0 Link DU4001M-CS Link BYPASS2 (0 Link DU7001.1M- Link DU2597M-DU Link CDT-67 (0) Link DU2632M-DU Link DU2633M-DU Link DU2005M-CS Link DU2006M-DU Link DU4003M-DU Link DU4003M-DU Link DU4299M-DU Link DU2630.1M-	Ty 04 (0)) DU7001M (0) 7004M (0) 2633M (0) 2634M (0) 02 (0) 2005M (0) 4002.1 (0) 4298M (0) DU2631M (0) 2632.1M (0)	pical_Yea	r_Model_R	eport			
**************************************	**************************************	0.10 0.81 1.00 0.00 3.43 39030066 13369442 31881600	sec sec sec				
		Average		Maximum	Time	of Max	 Maximum
Time of Max		Denth	Denth	Run UCI	0.000	rranco	
Occurrence Node days hr:min	Туре	Feet	Feet	Feet	days	hr:min	Feet
CSO-3 219 12:45	JUNCTION	0.55	5.90	746.95	219	12:43	746.28
CS0-4	JUNCTION	0.12	0.31	752.01	219	13:01	752.01
219 13:00 DU1001M 219 13:00	JUNCTION	0.52	1.74	739.51	219	13:01	739.50
DU1002M	JUNCTION	0.65	2.24	740.10	219	13:01	740.08
219 13:00 DU1003M	JUNCTION	0.50	2.21	740.22	219	13:01	740 20
219 13:00		0.00			~	10.01	770.20
219 13:00	JUNCTION	0.64	2.46	740.67	219	12:43	740.62
DU1010M 219 13.00	JUNCTION	0.61	18.08	757.08	219	12:42	742.51

743.62

745.68

751.77

JUNCTION	0.52	1.74
JUNCTION	0.65	2.24
JUNCTION	0.50	2.21
JUNCTION	0.64	2.46

0.56

0.65

0.65

Page 3

21,20

60.55

4.31

JUNCTION

JUNCTION

JUNCTION

219 13:00 DU1013M 219 13:00

DU1016M 174 18:15 DU2001M

760.65

800.35

752.23

219

13:25

219 13:27

247 13:51

	Typi	ical_Year_	_ModelRe	eport			
326 12:15 DU2002M	JUNCTION	1.42	2.26	749.43	290	20:47	749.42
326 11:00 DU2003.1M	JUNCTION	1.37	4.68	752.01	326	14:03	751.84
290 21:15 DU2003M	JUNCTION	1.43	2.95	750.07	326	09:44	750.04
DU2006M	JUNCTION	0.20	0.73	753.02	219	12:55	752.99
DU2597M 219 13:00	JUNCTION	0.08	16.59	917.46	219	12:53	901.84
DU2630.1M	JUNCTION	0.10	0.67	903.71	219	12:59	903.71
DU2631M 219 13:00	JUNCTION	0.13	1.17	900.18	219	12:59	900.18
DU2632.1M 219 13:00	JUNCTION	0.34	0.98	899,22	219	12:59	899.22
DU2633M 219 13:00	JUNCTION	0.32	1.13	899.44	219	12:59	899.44
DU2634M 219 13:00	JUNCTION	0.33	1.12	899.41	219	12:59	899.41
DU2815M 326 11:15	JUNCTION	0.44	1.17	748.26	290	20:54	748.26
DU2818M 174 22:30	JUNCTION	0.58	1.38	747.98	290	20:55	747.97
DU2821M 290 21:00	JUNCTION	0.44	1.14	747.59	290	20:56	747.59
DU2826M 326 11:15	JUNCTION	0.53	1.30	748.69	290	20:53	748.68
DU2834M 290 21:30	JUNCTION	0.51	1.34	749.03	290	20:52	749.01
DU3097M 219 13:00	JUNCTION	0.19	1.30	816.20	219	12:57	816.15
DU3098M 219 13:00	JUNCTION	0.13	0.64	814.26	219	12:57	814.26
DU3107.1M 219 12:45	JUNCTION	0.22	21.41	839.38	219	12:42	820.12
DU3107.2M 219 13:00	JUNCTION	0.09	0.43	845.41	219	12:51	845.38
DU3107M 219 13:00	JUNCTION	0.16	0.91	817.46	219	12:53	817.41
DU3155M 219_13:00	JUNCTION	0.43	10.28	751.38	219	13:25	746.16
DU3156M 219_13:00	JUNCTION	0.41	18.07	759.16	219	12:41	746.06
DU3158M 219 12:45	JUNCTION	0.55	4.77	746.79	219	12:43	746.37
DU3168M 219_13:00	JUNCTION	0.35	1.56	746.31	219	13:02	746.08
DU3177M 290 21:00	JUNCTION	0.71	1.66	746.47	219	13:03	746.28
DU3184M 290 21:00	JUNCTION	0.49	1.46	746.65	219	13:04	746.54
DU3191M 290 21:00	JUNCTION	0.76	1.44	746.96	290	20:58	746.96
290 21:00	JUNCTION	0.55	1.34	747.25	290	20:58	747.25
219 13:00	JUNCTION	0.07	0.55	802.45	219	13:01	802.45
219 13:00	JUNCTION	0.14	1.30	807.90	219	13:01	807.88
219 13:00	JUNCTION	0.13	0.77	836.34	219	13:01	836.33

Page 4

.

C

 \bigcirc

Ċ

	Tvpi	cal_Year_	Model Re	eport			
DU4006.1M	JUNCTION	0.00	0.00	859.09	0	00:00	859.09
DU4006M	JUNCTION	0.00	0.00	840.08	0	00:00	840.08
DU4033M	JUNCTION	0.00	0.00	838,45	0	00:00	838.45
DU4037M	JUNCTION	0.00	0.00	846.40	0	00:00	846.40
DU4298M	JUNCTION	0.03	14.69	769.26	219	12:35	758.76
DU4299M	JUNCTION	0.14	1.03	759.15	219	13:01	759.13
DU5001M 326 13:30	JUNCTION	0.04	0.19	904.38	326	13:29	904.38
DU5013M 219 13:00	JUNCTION	0.10	0.50	888.30	219	12:51	888.27
DU6025M 219 13:00	JUNCTION	0.06	49.46	792.02	21 9	12:41	746.06
DU6028M 219 13:00	JUNCTION	0.06	17.39	759.16	219	12:41	746.04
DU6029M 219 13:00	JUNCTION	0.11	10.49	754.61	219	12:43	746.05
DU61775	JUNCTION	0.02	21.32	759.58	219	12:39	746.60
DU7001.1M	JUNCTION	0.11	0.52	747.52	219	12:59	747.52
DU7001.2M	JUNCTION	0.16	0.89	749.89	219	12:59	749,89
DU7001M	JUNCTION	0.20	0.82	738.25	219	13:01	738.24
DU7002M	JUNCTION	0.07	0.33	791.33	219	12:59	791.33
DU7003M	JUNCTION	0.16	0.94	794.94	219	12:58	794.94
DU7004.1M	JUNCTION	0.11	0.55	805.55	219	12:58	805.55
DU7004M	JUNCTION	0.13	0.82	896.90	219	12:51	896.82
DU7006M	JUNCTION	0.16	0.53	898.65	219	13:05	898.65
JCT-38	JUNCTION	0.28	1.10	899.45	219	12:59	899.45
CS02	OUTFALL	0.00	0.00	723.91	0	00:00	723.91
CS03-OUTFALL	OUTFALL	0.02	1.83	728.99	219	12:46	728.98
DU2635M	OUTFALL	0.00	0.00	889.61	0	00:00	889.61
JCT-20	OUTFALL	0.00	0.41	735.41	219	13:00	735.40
WWTP	OUTFALL	0.19	0.62	730.62	219	13:01	730.62
DU2005M	STORAGE	0.22	0.92	751.23	219	13:19	751.19
DU2632M	STORAGE	0.21	1.43	900.23	219	13:00	900.23
DU3157M	STORAGE	0.32	4.40	746.70	219	12:46	746.59
DU4001M	STORAGE	0.28	1.60	753.32	219	13:00	753.28
647 HJ.0V							

 $\left(\begin{array}{c} \\ \end{array} \right)$

Ċ

C

Node Inflow Summary

-		Maximum	Maximum			Lateral	
Total		Lateral	Total	Timo	of Max	TRETOW	
Inflow				r me	UT Max	TULIOM	
Volume		INTIOW	Intlow	οςςι	irrence	Volume	
Node gal	Туре	MGD	MGD	days	hr:min	10^6 gal	10^6
5							
-							
CSO-3 137.932	JUNCTION	0.000	15.222	219	12:41	0.000	
CSO-4 54 149	JUNCTION	0.000	1.087	219	13:00	0.000	
DU1001M	JUNCTION	0.000	11.307	219	13:01	0.000	
DU1002M	JUNCTION	0.000	11.313	219	13:01	0.000	
445.544 DU1003M	TUNCTTON	0 000	3 081	210	12.42	0,000	
202.866	SUNCTION	0.000	5.001	219	12:42	0.000	
391.438	JUNCITON	0.000	10.231	219	13:01	0.000	
DU1010M 391.469	JUNCTION	0.000	10.231	219	13:01	0.000	
DU1013M	JUNCTION	0.000	10.230	219	13:01	0.000	
DU1016M	JUNCTION	0.000	10.231	219	13:01	0.000	
391.479 DU2001M	JUNCTION	0.000	4 482	290	20.49	0 000	
385.944 DU2002M	JUNCTION	0,000	10 100	200	10.31	0.000	
328.718	JUNCITON	0.000	12.123	290	19:31	0.000	
375.328	JUNCTION	0.000	4.800	192	20:41	0.000	
DU2003M 335-066	JUNCTION	0.000	7.297	4	11:38	0.000	
DU2006M	JUNCTION	8.357	8.357	219	13:20	253.005	
DU2597M	JUNCTION	2.684	2,684	219	12:49	17,716	
17.879 DU2630.1M	TUNCTION	5 296	5 296	210	12.50	20 479	
39.860 DU2621M	JUNCTION	0.000	5.290	213	12.39	39.470	
40.121	JUNCIEON	0.000	5.296	219	12:59	0.000	
DU2632.1M 40.283	JUNCTION	0.000	0.967	219	12:58	0.000	
DU2633M	JUNCTION	0.000	0.842	174	16:58	0.000	
DU2634M	JUNCTION	0.000	0.851	174	16:57	0.000	
37.695 DU2815M	JUNCTION	0.000	3,831	290	20:54	0.000	
249,920 DU2818M		0.000	2 077	200	20.54	0.000	
249.919	2 OUCL TOU	0.000	5.62/	290	20:54	0.000	
249.918	JUNCTION	0.000	3.824	290	20:55	0.000	

 C_{ℓ}

Page 6

.

	Тур	ical_Year_	_ModelRep	ort		
DU2826M 249-923	JUNCTION	0.000	3.841	290	20:53	0.000
DU2834M	JUNCTION	0.000	4.114	290	20:47	0.000
DU3097M	JUNCTION	0.000	3.567	219	12:53	0.000
DU3098M	JUNCTION	0.000	3.427	219	12:57	0.000
DU3107.1M	JUNCTION	0.000	3,619	219	12:51	0.000
DU3107.2M	JUNCTION	0.000	3.620	219	12:51	0.000
DU3107M	JUNCTION	0.000	3.619	219	12:51	0.000
DU3155M	JUNCTION	0.000	14.179	219	12:41	0.000
DU3156M	JUNCTION	0.000	14.767	219	12:41	0.000
DU3158M	JUNCTION	0.000	14.950	219	12:41	0.000
DU3168M	JUNCTION	0.000	4.067	219	13:05	0.000
DU3177M	JUNCTION	0.000	3.861	219	13:05	0.000
DU3184M	JUNCTION	0.000	3.817	290	20:58	0.000
DU3191M	JUNCTION	0.000	3.819	290	20:57	0.000
DU3206M	JUNCTION	0.000	3.822	290	20:56	0.000
DU4002.1M	JUNCTION	0.000	11.062	219	13:01	0.000
DU4003M	JUNCTION	0.000	11.147	219	13:01	0.000
DU4004M	JUNCTION	11.147	11.147	219	13:00	61.707
DU4006.1M	JUNCTION	0.000	0.000	0	00:00	0.000
DU4006M	JUNCTION	0.000	0.000	0	00:00	0.000
DU4033M	JUNCTION	0.000	0.000	0	00:00	0.000
DU4037M	JUNCTION	0.000	0.000	0	00:00	0.000
DU4298M	JUNCTION	0.000	5.580	219	12:53	0.000
DU4299M	JUNCTION	0.000	11.061	219	13:01	0.000
DU5001M	JUNCTION	0.137	0.137	326	13:28	2.564
DU5013M	JUNCTION	0.000	3.621	219	12:51	0.000
DU6025M	JUNCTION	0.040	0.559	219	12:41	2.149
DU6028M	JUNCTION	0.000	5.864	219	12:41	0.000
DU6029M	JUNCTION	0.031	3.431	219	12:41	1.461
DU6177S	JUNCTION	0.000	23.332	219	12:40	0.000
DU7001.1M	JUNCTION	0.000	3.414	219	12:59	0.000
DU7001.2M	JUNCTION	0.000	3.415	219	12:59	0.000
		rage	1			

(

(

Typical_Year_Model_Report							
JUNCTION	0.000	14.684	219	13:01	0.000		
JUNCTION	0.000	3.416	219	12:58	0.000		
JUNCTION	0.000	3.422	219	12:58	0.000		
JUNCTION	0.000	3.426	219	12:58	0.000		
JUNCTION	0.000	3.626	219	12:50	0.000		
JUNCTION	0.000	0.967	219	12:59	0.000		
JUNCTION	0.000	0.839	219	13:00	0.000		
OUTFALL	0.000	4.736	219	13 : 19	0.000		
OUTFALL	0.000	18.073	219	12:46	0.000		
OUTFALL	0.000	4.457	219	13:00	0.000		
OUTFALL	0.000	10.112	219	13:00	0.000		
OUTFALL	0.000	14.683	219	13:01	0.000		
STORAGE	0.000	8.357	219	13:20	0.000		
STORAGE	0.000	5.296	219	13:00	0,000		
STORAGE	30.944	30.944	219	12:45	151.184		
STORAGE	0.000	11.331	219	13:00	0.000		
	Typ JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE	Typical_Year_ JUNCTION 0.000 OUTFALL 0.000 OUTFALL 0.000 OUTFALL 0.000 STORAGE 0.000 STORAGE 30.944 STORAGE 0.000	Typical_Year_Model_Rep JUNCTION 0.000 14.684 JUNCTION 0.000 3.416 JUNCTION 0.000 3.422 JUNCTION 0.000 3.426 JUNCTION 0.000 3.426 JUNCTION 0.000 3.626 JUNCTION 0.000 0.967 JUNCTION 0.000 0.839 OUTFALL 0.000 4.736 OUTFALL 0.000 18.073 OUTFALL 0.000 14.683 OUTFALL 0.000 14.57 OUTFALL 0.000 14.683 STORAGE 0.000 8.357 STORAGE 0.000 5.296 STORAGE 0.000 11.331	TypicI_Year_Wodel_Reputt JUNCTION 0.000 14.684 219 JUNCTION 0.000 3.416 219 JUNCTION 0.000 3.422 219 JUNCTION 0.000 3.422 219 JUNCTION 0.000 3.426 219 JUNCTION 0.000 3.626 219 JUNCTION 0.000 0.967 219 JUNCTION 0.000 0.839 219 JUNCTION 0.000 0.839 219 JUNCTION 0.000 4.736 219 JUNCTION 0.000 4.736 219 OUTFALL 0.000 18.073 219 OUTFALL 0.000 14.683 219 OUTFALL 0.000 14.683 219 STORAGE 0.000 8.357 219 STORAGE 30.944 30.944 219 STORAGE 0.000 11.331 219	Typical_Year_Model_ReputJUNCTION0.00014.68421913:01JUNCTION0.0003.41621912:58JUNCTION0.0003.42221912:58JUNCTION0.0003.42621912:50JUNCTION0.0003.62621912:50JUNCTION0.0000.96721912:50JUNCTION0.0000.83921913:00OUTFALL0.0004.73621913:10OUTFALL0.00018.07321913:00OUTFALL0.00010.11221913:00OUTFALL0.00014.68321913:00OUTFALL0.00014.68321913:00STORAGE0.0005.29621913:00STORAGE30.94430.94421912:45STORAGE0.00011.33121913:00		

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Feet	Min. Depth Below Rim Feet
CSO-3 DU1003M DU1004M DU1010M DU1013M DU1016M DU2001M DU2003.1M DU2633M DU2633M DU2634M DU3097M DU3107.1M DU3155M DU3156M DU3158M DU3158M DU4298M DU4298M DU4025M	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	0.47 56.28 0.43 19.52 23.97 38.27 96.20 1645.02 0.29 36.36 28.17 0.06 0.65 15.19 17.36 0.50 2.14 17.91 Page 8	$\begin{array}{c} 2.645\\ 0.704\\ 0.301\\ 16.081\\ 19.197\\ 58.553\\ 2.504\\ 3.178\\ 15.754\\ 0.133\\ 0.117\\ 0.051\\ 20.155\\ 8.067\\ 16.067\\ 16.067\\ 2.563\\ 13.043\\ 48.964\end{array}$	$\begin{array}{c} 24.005\\ 15.547\\ 17.566\\ 9.199\\ 23.903\\ 0.000\\ 12.226\\ 12.562\\ 0.893\\ 12.367\\ 14.092\\ 6.789\\ 0.000\\ 19.673\\ 11.838\\ 24.099\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$

(i

	Туріс	al_Year_Model	Report	
DU6028M	JUNCTION	0,65	15.390	0.000
DU6029M	JUNCTION	0.16	8.898	6.862
DU6177S	JUNCTION	0.53	15.737	0.000
JCT-38	JUNCTION	10.44	0.101	12.349

(

Node Flooding Summary

Flooding refers to all water that overflows a node, whether it ponds or not.

Node	Hours Flooded	Maximum Rate MGD	Time of Max Occurrence days hr:min	Total Flood Volume 10^6 gal	Maximum Ponded Depth Feet
DU6028M	0.01	4.314	219 12:41	0.000	17.39
DU6177S	0.01	4.919	219 12:40	0.000	21.32

Storage Volume Summary

· · · · · · · · · · · · · · · · · · ·						
Max Maximum	Average	Avģ	E&I	Maximum	Мах	Time of
	Volume	Pcnt	Pcnt	Volume	Pcnt	
Occurrence Outflow Storage Unit hr:min MGD	1000 ft3	Full	Loss	1000 ft3	Full	days
م بين بين بين ميد بين بين عند عند عن عند بين بين بين ميد اين عند من عن عن الله عن عال الله عن الله عل	و موال هېې وېې وېې وېې و وې و و و و و و و و و	~ • • • • • • • •				
DU2005M	0.011	2.54	0.00	0.046	11	219
13:19 8.848						
DU2632M	0.001	0.78	0.00	0.036	20	219
DU3157M	0.013	2.48	0.00	0.176	34	219
12:46 33.452					• •	
DU4001M	0.000	0.00	0.00	0.000	0	0
00:00 11.197						

******** Outfall Loading Summary

Outfall Node	Flow	Avg.	Max.	Total
	Freq.	Flow	Flow	Volume
	Pcnt.	MGD	MGD	10^6 gal
CSO2	5.95	0.338	4.736	3.476
CSO3-OUTFALL	5.35	1.665	18.073	14.722
DU2635M	2.71	0.557	4.457	2.241
JCT-20	3.89	1.216	10.112	8.168
WWTP	98.94	1.522	14.683	503.699
System	23.37	5.298 Pa	49.598 ge 9	532.305

Maximum Time of Max Maximum Max Max/ Maximum Time of Max Maximum |Run Flow| Occurrence |Output Flow| Occurrence Full |Veloc| Occurrence Full Occurrence Top Width Link Type MGD days hr:min MGD hr:min Flow ft/sec days hr:min MGD Maximum Time of MGD days ft/sec days hr:min Depth days hr:min hr:min Flow ft
 1.760
 219
 12:53

 0.86
 219
 12:56

 6.013
 219
 13:00

 0.88
 219
 13:00

 0.842
 174
 16:58

 1.00
 97
 20:32

 14.179
 219
 12:41

 1.00
 4
 10:22

 1.080
 219
 13:01

 0.63
 219
 13:01

 0.63
 219
 13:01

 0.112
 219
 13:00

 3.619
 219
 12:51
 CONDUIT 2.64 219 12:47 CONDUIT 8.17 219 13:00 BYPASS1 1.637 219 13:00 0.88 BYPASS2 13:00 1.10 CDT-67 13:00 0.45 1.25 5.380 219 1.25 0.839 219 1.00 CSO3-DU3155M 14.179 12.293 219 6.98 219 12:41 12:45 0.83 2.00 CS04-DU1003M CONDUIT 1.071 219 3.51 271 08:34 CONDUIT 32.56 247 12:20 13:00 0.14 1.25 CSO_OVERFLOW 10.112 9.626 219 13:00 1.25 12:51 3.619 3.230 219 219 13:00 0.26 0.67 219 12:51 13:01 1.25 11.302 219 11.162 219 5.78 219 13:01 13:01 13:00 0.71 219 2.25 CONDUIT 5.73 219 13:01 CONDUIT 3.88 219 12:42 DU1002M-DU1001M 11.307 13:01 219 11,180 219 13:01 12:42 13:00 2.45 0.94 219 2.00 DU1003M-DU1002M 3.080 219 3.011 219 4 06:13 13:00 0.90 1.00 1.25 CONDUIT 4.12 219 13:01 CONDUIT 2.55 219 12:42 DU1004M-DU1002M 13:00 5.48 219 13:01 8.273 8.189 219 219 13:01 219 12:42 0.97 2.00 DU1004M-DU1003M 2.025 1.940 219 4 08:09 13:00 2.72 1.00 1.25 CONDUIT 5.04 219 13:01 CONDUIT 5.04 219 13:01 5.04 219 13:01 219 13:01 174 17:43 219 13:01 DU1010M-DU1004M 10.231 10.131 219 1.00 13:00 1.73 2.00 DU1013M-DU1010M 10.231 10.131 219 10:18 13:00 1.59 1.00 4 2.00 CONDUIT DU1016M-DU1013M 10.230 219 13:01 10.131 219
 Bit
 Bit</th 1.00 4 10:09 192 20:41 4 06:26 13:00 2.03 2.00 4.800 33 4.326 22:30 0.26 1.00 1.49 CONDUIT 3.33 219 12:54 CONDUIT 8.43 290 19:31 DU2002M-DU2834M 290 20:47 4.114 4.025 326 11:00 0.70 DU2003M-DU2002M 0.61 12.159 290 20:49 290 19:31 2,00 11.046 247 15:00 0.25 0.99 174 22:22 1.92 CONDUIT 8.08 194 18:10 CONDUIT 13.57 219 12:58 DU2005M-DU2001M 290 4.482 20:49 4.345 326 14:30 0.26 0.81 219 13:19 1.50 DU2006M-DU2005M 8.357 219 13:20 8.190 219 13:15 0.46 DU2597M-DU7004M 1.50 2.250 219 0.54 13:19

 DU2597M-DU7004M
 CONDUIT

 13:00
 1.25
 7.62
 219
 12:49

 DU2630.1M-DU2631M
 CONDUIT

 13:00
 0.24
 8.99
 219
 12:59

2.684 219 12:49 219 0.83 5.296 1.00 219 219 12:45 12:59 219 0.33 219 12:59 1.99 DU2631M-DU2632M CONDUIT 5.296 5.296 219 13:00 219 Page 10

(

Tynical	Year Mod	el Re	nort		
13:00 0.30 3.89 219 12:59	0.64	219	12:59	2.00	
DU2632.1M-DU7006M CONDUIT	0.967	219	12:59	0.967	219
13:00 2.56 2.36 219 12:59 DU2622W DU2625W	0.75	219	12:59	1.00	
$13 \cdot 00 0 10 14 21 210 12 \cdot 00$	4.457	219	12:00	4.45/	219
DU2633M-DU2634M CONDUCT	0.851	174	16:57	0.839	219
13:00 1.37 1.87 271 08:42	1.00	- 4	09:46	1.00	223
DU2634M-DU2632.1M CONDUIT	0.839	219	13:00	0.839	219
13:00 1.90 1.69 174 16:56	_0.99	219	12:59	1.00	
DU2815M-DU2818M CONDULI 11:15 0.60 2.83 210 12:57	3.827	290	20:54	3.793	326
DU2818M-DU2821M CONDUTT	3.824	290	20.55	2.00	174
22:30 1.06 2.86 219 12:58	0.63	290	20:56	2.00	~/ 1
DU2821M-DU3206M CONDUIT	3.822	290	20:56	3.797	290
21:00 0.60 2.94 219 12:59	0.62	290	20:57	2.00	226
11:15 0 80 2 96 219 12.56	3.031	290	20:54	2 00	326
DU2834M-DU2826M CONDUIT	3.841	290	20:53	3,798	290
20:45 0.80 2.74 219 12:55	0.66	290	20:53	2.00	
DU3097M-DU3098M CONDUIT	3,427	219	12:57	3.365	219
13:00 1.11 4.67 219 12:52	0.87	219	12:57	1.25	210
13:00 0.49 9.17 219 12:57	0.48	219	12:50	1 25	219
DU3107.1M-DU3107M CONDUIT	3.619	219	12:51	3.230	219
13:00 1.46 5.00 219 12:50	0.86	219	12:53	1.25	
DU3107M-DU3097M CONDUIT	1.808	219	12:53	1.682	219
DU3155M-DU3156M CONDUCT	14 143	219	12:30	12 202	210
12:45 9.57 6.97 219 12:41	1.00	4	10:21	2.00	219
DU3156M-DU1016M CONDUIT	10.231	219	13:01	10.130	219
13:00 0.87 5.04 219 13:01	1,00	210	10:21	2.00	
12.45 2 10 7 37 219 12.41	14.950	174	17:41 17:42	2 00	219
DU3158M-CSO3 CONDUIT	15,222	219	12:41	12,281	219
12:45 0.56 7.72 219 12:41	1.00	174	17:42	2.00	
DU3168M-DU3156M CONDUIT	7.045	219	13:03	3.807	290
DII3177M-DII3168M CONDUCT	4 067	219	13:02	2.00	200
21:00 1.23 3.31 290 21:00	0.77	219	13:02	2.00	290
DU3184M-DU3177M CONDUIT	3.861	219	13:05	3.814	290
21:00 0.72 2.50 174 17:46	0.77	219	13:03	2.00	
DUSTATW-DUST84W CONDOLL 21.00 0.62 3.02 124 12.30	3.817	290	20:58	3.815	290
DU3206M-DU3191M CONDUIT	3.819	290	20:57	2.00	290
21:00 0.64 2.64 290 20:57	0.67	290	20:58	2.00	2.74
DU4002.1M-DU4299M CONDUIT	11.061	219	13:01	10.861	219
13:00 0.40 23.02 219 12:53	0.63	219	13:01	1.25	310
13.00 0.75 7.92 219 13.01	11.062	219	13.01	1 00	513
DU4004M-DU4003M CONDUIT	11.147	219	13:01	10.952	219
13:00 0.46 16.59 219 12:32	0.65	219	13:01	1.50	
DU4006,1M-DU4006M CONDUIT	0.000	0	00:00	0.000	0
DI4006M-DI4033M CONDUCT	0.00	4	00:00	0.000	0
00:00 0.00 0.00 0 00:00	0.00	4	00:00	0.000	U
DU4033M-DU4004M CONDUIT	0.000	0	00:00	0.000	0
	0.26	219	13:01	1.30	~
	0.000	0 4	00:00	0.000	0
DU4298M-DU4001M CONDUIT	5.580	219	12:53	5.336	174
17:45 1.75 7.15 219 12:53	0.96	219	12:53	1.25	
DU4299M-DU4298M CONDUIT	5.580	219	12:53	5.336	174
T1'42 0'35 TC'LT STA TC'22	0.00 Page 11	573	T2:0T	1.25	
	.~g~ II				

 $\left(\right)$

C

C

Typical	_Year_Mod	lel_Report		
DU5001M-DU2632.1M CONDUIT	0.137	326 13:	29 0.137	326
13:30 0.17 2.65 326 13:29	0.28	326 13:	29 0.67	220
DU5013M-DU3107.2M CONDUIT	3.620	219 12:	51 3,219	219
13:00 0.47 15.65 219 12:51	0.47	219 12:	51 0 99	~~~
DU6025M-DU6028M CONDUIT	0.541	219 12	41 0.039	174
17:45 2.23 4.46 219 12:41	1.00	4 10:	20 0 50	T/ 4
DU6028M-DU3156M CONDUIT	5.845	219 12		715
06:30 0.56 2.93 219 12:41	1.00	174 17.	31 2 00	243
DU6029M-DU6028M CONDUIT	3.411	219 12.		210
12:45 0.26 4.18 219 12:41	1.00	174 17.	44 1 50	613
DU6177S-CS030UTFALL CONDUTT	18.073	219 12.		210
12:45 1.28 9.04 219 12:46	0.96	219 12	46 2 00	213
DU6177S-DU3157M CONDUTT	23,332	210 12.		210
12:45 0.06 11.04 174 16:48	0.82	219 12	46 5 51	219
DU7001.1M-DU7001M CONDUTT	3 413	219 12.	50 J.JI 50 Z J11	210
13:00 0.36 10.91 219 12:59	0 42	210 12.		212
DU7001.2M-DU7001.1M CONDUTT	3 414	210 12.	50 2 400	210
13:00 0.66 7.37 219 12:59	0 57	210 12.	59 5.409 50 1.25	713
DU7002M-DU7001.2M CONDUTT	3 415	210 12:	59 1.25	210
13:00 0.15 8.86 219 12:58	0 49	210 12.	59 5.402 50 1 75	513
DU7003M-DU7002M CONDUTT	3,416	219 12.	59 1.23	210
13:00 0.59 8.41 219 12:58	0.51	210 12.	50 3.355 58 1.25	219
DU7004.1M-DU7003M CONDUIT	3.422	219 12.	58 2 204	210
13:00 0.40 6.94 219 12:58	0.60	219 12.	58 1 25	219
DU7004M-DU5013M CONDUIT	3.621	219 12.	50 1.23	210
13:00 0.83 10.22 219 12:48	0.66	219 12		219
DU7006M-DU7004M CONDUIT	0.967	219 13.		210
13:00 0.55 3.58 219 13:05	0.57	219 12		213
TO_WWTP CONDUIT	14 683	219 13	11 14 571	210
13:00 0.17 21.23 219 12:43	0.32	219 13:0	$\frac{1}{1}$ 2 10	213
DU2003.1M-DU2003M ORIFICE	4,291	326 14		174
21:45	1.00	4 00.0		1/4
DU2632M-DU2633M ORIFICE	0.839	219 13.0	0 0 830	210
13:00	1.00	4 05.4	18 0.055	213
DU4001M-CSO4 ORIFICE	1.087	219 13.0	1 073	210
13:00	1.00	4 05-3	4 1.075	573
DU2005M-CSO2 WEIR	4.736	219 13	9 4 285	210
13:15	0.10	219 13:1	9 7.205	773

-----_____ Adjusted --- Fraction of Time in Flow Class ----Avg. Avg. /Actual Up Down Sub Sup Froude Up Down Flow Conduit Length Dry Dry Dry Crit Crit Crit Crit Number Change ---------BYPASS1 0.00 0.00 0.00 0.99 0.00 0.00 0.00 1.00 0.53 0.0000 BYPASS2 0.0000 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 1.63 CDT-67 0.0001 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.28 CSO3-DU3155M 1.00 0.00 0.00 0.00 0.54 0.00 0.45 0.00 0.41 Page 12

 \int

.

	ту	/pical_`	Year_M	ode]_R	eport				
0.0000 CSO4-DU1003M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.37
0.0000 CSO_OVERFLOW	1.00	0.95	0.00	0.00	0.00	0.04	0.00	0.00	0.49
0.0000 DU-3107.2M-DU3107.1M	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	1 37
0.0000 DU1001M-DU7001M	1 00	0 00	0.00	0.00	0 00	0.00	0.00	0.00	0.00
0.0000 01001M DU1001M	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00
0.0000	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.64
DU1003M-DU1002M 0.0000	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.40
DU1004M-DU1002M 0.0000	1.00	0.00	0.00	0.00	0.12	0.00	0.87	0.00	0.48
DU1004M-DU1003M	1.00	0.00	0.00	0.00	0.12	0.00	0.87	0.00	0.42
DU1010M-DU1004M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.66
DU1013M-DU1010M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.57
0.0000 DU1016M-DU1013M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.55
0,0000 DU2001M-DU2003,1M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.38
0.0371 DU2002M-DU2834M	1 00	0.00	0.00	0.00	0.08	0.00	0.00	0 01	0.71
0.0018	1 00	0.00	0.00	0.00	0.00	0.00	0.00	0.91	0.71
0.0110	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.27
DU2005M-DU2001M 0.0034	1.00	0.00	0.00	0.00	0.06	0.61	0.00	0.32	1.90
DU2006M-DU2005M 0.0000	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	3.25
DU2597M-DU7004M	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	1.75
DU2630.1M-DU2631M	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	1.87
DU2631M-DU2632M	1.00	0.00	0.00	0.00	0.17	0.74	0.00	0.08	1.16
DU2632.1M-DU7006M	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.41
DU2632M-DU2635M	1.00	0.96	0.00	0.00	0.00	0.00	0.00	0.03	0.11
0.0000 DU2633M-DU2634M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.23
0.0002 DU2634M-DU2632.1M	1.00	0.00	0.00	0.00	0.99	0.00	0 00	0.00	0 22
0,0000 DU2815M-DU2818M	1 00	0.00	0.00	0.00	Λ 00	0.00	0.00	0.00	0.10
0.0000 DU2919M DU2921M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.40
0.0000	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.48
DU2821M-DU3206M 0.0000	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.51
DU2826M-DU2815M 0.0000	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.53
DU2834M-DU2826M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.46
DU3097M-DU3098M	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.97
DU3098M-DU7004.1M	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	2.25
DU3107.1M-DU3107M	1.00	0.00	0.00	0.00	0.98	0.01	0.00	0.00	0.91
0.000									

Ċ

(

Ć.

	T۱	vpical	Year M	odel R	enort				
DU3107M-DU3097M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.55
DU3155M-DU3156M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.34
DU3156M-DU1016M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.70
DU3157M-DU3158M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.57
DU3158M-CSO3	1.00	0.00	0.00	0.00	0.01	0.00	0.98	0.00	0.46
DU3168M-DU3156M	1.00	0.00	0.00	0.00	0.95	0.04	0.00	0.00	0.92
DU3177M-DU3168M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.52
DU3184M-DU3177M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.35
DU3191M-DU3184M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.69
DU3206M-DU3191M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.33
DU4002.1M-DU4299M	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	3.17
DU4003M-DU4002.1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	1.29
DU4004M-DU4003M	1.00	0.00	0.00	0.00	0.00	0.08	0.00	0.91	4.13
DU4006.1M-DU4006M	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DU4006M-DU4033M	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DU4033M-DU4004M	1.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00
DU4037MDU4033M	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DU4298M-DU4001M	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0,99	0.14
DU4299M-DU4298M	1.00	0.87	0.00	0.00	0.00	0.00	0.00	0.12	0.35
DU5001M-DU2632.1M	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	1.09
DU5013M-DU3107.2M	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	4.20
DU6025M-DU6028M	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.98	0.79
DU6028M-DU3156M	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.04
DU6029M-DU6028M	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.96	2.00
DU6177S-CS030UTFALL	1.00	0.00	0.00	0.00	0.93	0.05	0.00	0.00	0.08
DU6177S-DU3157M 0.0000	1.00	0.00	0.95	0.00	0.01	0.04	0.00	0.00	0.05
DU7001.1M-DU7001M 0.0000	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	2.76
DU7001.2M-DU7001.1M 0.0000	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	1.90
DU7002M-DU7001.2M 0.0000	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	2.55
DU7003M-DU7002M 0.0000	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	2.50
DU7004.1M-DU7003M 0.0000	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	1.80
DU7004M-DU5013M	1.00	0.00	0.00 Page 1	0.00 4	0.00	0.99	0.00	0.00	2.79
				••					

 \subset

 \bigcirc

Typical_Year_Model_Report

0 0000	iy	pical_	rear_m	odel_K	eport				
DU7006M-DU7004M	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.99
TO_WWTP 0.0000	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	5.88

^{*****}

(

(

Conduit Surcharge Summary

Conduit	Both Ends	Hours Full Upstream	Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
BYPASS2	0.01	0.01	0.01	0.03	0.01
CDT-67	10.41	10.41	10.41	0.01	0.01
CS03-DU3155M	15.18	15.18	15.18	0.01	0.03
DU1001M-DU7001M	0.01	0.01	0.01	0.40	0.01
DU1002M-DU1001M	0.01	0.01	0.01	188.39	0.01
DU1003M-DU1002M	153.90	153.90	153.92	0.01	0.01
DU1004M-DU1002M	0.01	0.01	0.01	453.43	0.01
DU1004M-DU1003M	56.23	56.23	56.24	645.59	0.01
DU1010M-DU1004M	0.43	0.43	0.43	61.47	0.43
DU1013M-DU1010M	19.51	19.51	19.51	46.23	19.46
DU1016M-DU1013M	23.96	23.96	23.97	111.77	23.90
DU2001M-DU2003.1M	177.05	177.05	179.59	0.01	0.01
DU2597M-DU7004M	0.12	0.12	0.13	0.35	0.12
DU2632.1M-DU7006M	0.01	0.01	0.01	350.05	0.01
DU2633M-DU2634M	28.08	28.08	28.08	144.70	28.08
DU2634M-DU2632.1M	0.01	0.01	0.01	262.79	0.01
DU2818M-DU2821M	0.01	0.01	0.01	23.45	0.01
DU3097M-DU3098M	0.01	0.01	0.01	0.32	0.01
DU3107.1M-DU3107M	0.01	0.01	0.01	1.12	0.01
DU3155M-DU3156M	17.36	17.36	17.36	348.77	17.18
DU3156M-DU1016M	17.35	17.35	17.36	0.01	0.17
DU3157M-DU3158M	0.49	0.49	0.49	0.46	0.36
DU3158M-CSO3	0.47	0.47	0.47	0.01	0.01
DU3177M-DU3168M	0.01	0.01	0.01	38.47	0.01
DU4298M-DU4001M	0.01	0.01	0.01	4.29	0.01
DU6025M-DU6028M	17.90	17.90	17.91	0.01	0.01
DU6028M-DU3156M	0.65	0.65	0.65	0.01	0.01
DU6029M-DU6028M	0.16	0.16	0.17	0.01	0.01
DU6177S-CS03OUTFALL	0.01	0.01	0.01	1.48	0.01

Analysis begun on: Thu Jun 19 08:45:42 2014 Analysis ended on: Thu Jun 19 10:16:26 2014 Total elapsed time: 01:30:44

APPENDIX K

EXISTING PROCESS FLOW DIAGRAM

 $\left(\right)$

()

(

.

APPENDIX L

EXISTING WWTP PLANS

.

Ċ

(

Ć

and the second second

- • a - i timana kenedekenang itik Kabakari eta

ĩ

APPENDIX M

EXISTING PROCESS CALCULATIONS

(

(

Duquesne WWTP Capacity Analysis

Tank Decenjpilon	SUILLEO Aren	Depth @trwatu	Depih @Q-	Depin @O	V W	에 에):	V A	51 75	V (X)	0) 33
		38 [FT]	簿[ET] 凝	编[FT]魏		#IKGAL]		IKGAU		FIKGAL1
Stabilization No.1	495.67	16.70	13.50	14.40	8,277.69	61.92	6.691.55	50.05	7.137.65	53.39
Stabilization No.12	512.95	16.60	13.50	14.40	8,514.97	63.69	6.924.83	51.80	7.386.48	55.25
Contact No.1	515.57	17.55	13.50	14.40	9,048.25	67.68	6.960.20	52.06	7.424.21	55 53
Contact No. 2	489.44	16.50	13.50	14.40	8,075.76	60.41	6.607.44	49.42	7.047.94	52.72
Aerobic Digester No.1	570.15	17.60			10,034.64	75.06				
Aerobic Digester No.*2*	512.95	17.35		•	8,899.68	66.57				
Aerobic Digester No.3	517.84	17.50			9,062.20	67.79				
Aerobic Digester No.14 #	554.57	17.60			9,760.43	73.01				
Final Clarifier No.1	1,156.00	***	9.90	10.00			9,215,39	68.93	9,306,18	69.61
Final Clarifler No. 2	1,156.00		9.90	10.00	***		9,215,39	68.93	9,306,18	69.61
Chlorine Contact Tank &	1,277.80	17.50	9.00	10.30		***	8.398.26	62.82	9,578,56	71.65
Grit Chamber	130.00		13.50				1,527.50	11.43		***

Final Clarifier Capacity

Design Criteria			
Surface Overflow Rate =	800.00	gpd/ft ²	[MMAF]
Surface Overflow Rate =	1,200.00	gpd/ft ²	[PHF]
Welr Loading =	10,000.00	gpd/ft	[MMAF]
Method			
Q =	(SOR) x	(A)	
Q=	(WL) x	(L)	
Analysis			
A =	2,312.00	ft ²	
Q _{av} ≖	1,849,600.00	gpď	
	1.85	mgd	
Q _{max} =	2,774,400.00	gpm	
	2.77	mgd	
Total Weir Length -	272.00	ft	
Q _{av} =	2,720,000.00	gpd	
	2.72	mgd	

Aeration Capacity Active States and Active States

Design Criteria				
	T₀≥	5.00	hr	[MMAF]
Method				
	Q =	V/	To	
Analysis				
	V _{Oav} =	203,336.36	gallons	
	Q _{av} =	40,667.27	gph	
		0.98	mgd	

Chlorine Contact Tank Capacity

Design Cri	teria		
To≥	30.00	min	[MMAF]
T _D ≥	15.00	min	[PHF]
Method			
Q =	٧/	To	
Analysis		•	
V _{Qav} ≖	62,819.00	gallons	
Q _{av} =	2,093.97	gpm	
	3.02	ന്നൂർ	
V _{max} =	71,647.62	gallons	
Q _{max} =	4,776.51	gpm	
	6.88	mgd	

Grit Chamber Capacity

Design Criteria

Design Crite	eria	***	
Tp≳	3.00	min	[MMAF]
Method			
Q=	V/	Τρ	
Analysis			
V _{Oav} = 1	1,425.70	gallons	
Q _{av} =	3,808.57	gpm	
	5.48	mgd	

APPENDIX N

EXISTING FINAL CLARIFIER PLAN AND PROPOSED UPGRADE EQUIPMENT

 $\left(\right)$

(

WEIRS AND SCUM BAFFLES

BENEFITS

- Complete range of notch patterns
- Fiberglass construction
- Full range of height and thickness
- Lengths to 20 feet

FEATURES

- Fiberglass construction
- Corrosion resistant
- UV suppressed
- Custom fabrication available

STATISTICS IN

Available in ISO, VE, NSF61

E CLEAR DIFFERENCE

COST-EFFECTIVE WEIR AND SCUM BAFFLE SYSTEMS

THE BASICS

- Custom engineered to clarifier/system dimensions
- Corrosion resistant fiberglass
- Retains floatables and scum
- Maintains even effluent flow into trough
- Stainless steel hardware
- · Vast array of shapes and sizes available
- Easily retrofitted to existing systems
- Most cost-effective corrosion resistant material

NY STATES

MOUNTING OPTIONS

STAMFORD BAFFLE 2.0™

BENEFITS

- Reduces clarifier TSS by as much as 70%
- Reduces turbidity
- Improves hydraulic capacity
- Installs in half the time of other baffles

FEATURES

- Increased horizontal projection
- 30° Inclination angle
- Integrally molded bracket
- Rugged construction
- Corrosion resistant
- 5 Year warranty

THE FIRST IMPROVEMENT IN DENSITY CURRENT BAFFLE PERFORMANCE IN 30 YEARS

THE STUDY

NEFCO has recently completed a multiyear CFD Baffle Design Study that led to the development of Stamford Baffle 2.0, which is over 30% more effective than the original 45^O Stamford Baffle. The new 30° baffle will improve clarifier performance by reducing overflow TSS as much as 70%!

LAUNDER COVER SYSTEMS

LAUNDER COVER SYSTEMS

BENEFITS

- Inhibits algae growth
- Contains odors
- Operates 24/7
- Reduces manpower
- Maintenance free

FEATURES

- Hinged cover panels open to tank center
- Stainless steel latch/handle for safety and security
- Attractive arched design
- Restraint cable

THE CLEAR DIFFERENCE.

REVOLUTIONIZING THE WAY TREATMENT PLANTS DEAL WITH ALGAE

For more information visit our web site www.nefcoinnovations.com

Patent No. 5,670,045 Patent No. 5,965,023 Patent No. 6,216,881 Patent No. 6,712,222 Patent No. 7,473,358 Patent No. 7,591,381

ſ

NEFCO 4362 Northlake Blvd, Ste 213 Palm Beach Gardens, FL 33410 (561) 775-9303

APPENDIX O

ALTERNATIVE 1 PROCESS FLOW DIAGRAM

(

APPENDIX P

ALTERNATIVE 1 SITE PLAN

.

ĺ

APPENDIX Q

ALTERNATIVE 1 PROCESS CALCULATIONS

Duquesne WWTP CSO Bypass Treatment BOD and TSS Removal Mass Balance

CSO Solutions for the Future...®

STORM KING® DETAIL INFORMATION

To:	KLH
Project:	Duquesne WWTP
Location:	Duquesne, PA
Hydro Ref:	14-3107-A
Date:	June 25, 2014

The Storm King shall use an induced vortex and a Swirl Cleanse screen with 4mm diameter opening apertures to separate solids from liquids. The Storm King shall be self-activating and shall not require instrumentation or external power. The Storm King shall be reliable, essentially non-clogging, self-cleansing and contain no moving or interchangeable parts.

DESIGN SPECIFICATIONS

A. Performance Objective: The Storm King shall treat combined sewage to primary treatment levels while removing gross solids, grit, sand, silts and sediment, and floatable debris greater than 4mm in two directions while providing in vessel disinfection. The equipment shall require no external power source and shall have no moving parts. All captured pollutants (both floatable and settleable solids), shall be removed from a centrally located sump within the separator or via gravity. The Storm King shall provide an induced hydrodynamic mixing regime in the unit with sufficient detention time conducive for high rate disinfection using sodium hypochlorite.

B. Grading Curve – Particle Settling Velocity vs. Percent Finer

Hydro International (Wet Weather), 94 Hutchins Drive, Portland ME 04102 Tel: (207) 756-6200 Fax: (207) 756-6212 Web: <u>www.hydro-int.com</u>

Page | 2

C. Treatment Target

Treatment Objective		Peak Design Flow Rate		
1.	Total Suspended Solids Reduction	45 - 50%		
2.	Total Gross BOD₅ Reduction	25 - 30%		
3.	Effluent Fecal/E. coli Concentration	≤200 cfu/100mL		
4.	Screening (in two directions)	~4mm		
5.	Grit Removal	95% of 106 micron		

D. Design Criteria

1.	Peak Design Inflow Rate	12.00	mgd
2.	Spill Flow Rate	11.10	mad
3.	Underflow Rate	0.90	mad
4.	Number of Units	1	No.
5.	Chamber Diameter	30	ft.
6.	Inlet Pipe Diameter	30	in.
7.	Underflow Pipe Diameter	8	in
8.	Overspill Pipe Diameter	ĥ	in
9.	Separator Headloss at Peak Design Inflow Rate	6	in.
10.	Siphon Driving Head	48	in.
11.	Predicted TSS Removal Efficiency	50	%
12.	Storage Volume before Discharge	86 500	70 Gallone
13.	Bacteria Removal from Underflow	75	gailons %
14	Maximum Influent Bacteria Concentration	2 0 1 06	70 ofu/100ml
15	NaCIO Feedrate at Peak Design Flow	2.0010	
16	Approximate in Vessel Detention Time	15.30	mg/∟
10.	Chhiovillare III Aessei Defeitiou 11me	9.5	minutes

MATERIALS

- A. Unless otherwise noted, the Storm King components and fixing accessories shall be fabricated from 316 stainless steel. The Swirl Cleanse perforated screen shall be fabricated in polymer coated 316 stainless steel. The support frame shall be fabricated in galvanized carbon steel. The treatment device shall be shipped to the site, preassembled to the maximum extent possible. Final assembly of the bolted connections shall be the responsibility of the General Contractor.
- **B.** All welding shall conform to the most recent standards of the American Welding Society and American Society of Mechanical Engineers (ASME).
- **C.** The device shall be designed to withstand all loadings which may occur during fabrication, shipping, installation, and operation of the equipment.
- **D.** The internal components shall be supplied with all weld spatter and flux residue removed, all rough and uneven welds ground smooth, and shall be free of any sharp edges. Components shall have an acid washed surface finish.
- E. All supporting materials shall be installed so as not to impede the smooth circular flow within the unit.

- F. Interior tank walls and all benching shall be filleted to form a smooth cylindrical surface.
- G. Superstructure shall be reinforced concrete supplied by the General Contractor.
- H. The Swirl Cleanse component shall capture floatables and neutrally buoyant materials. The Swirl Cleanse shall be back washed automatically by an air-regulated siphon located in the overflow channel. Floatables retained on the screen shall be washed to the center and discharged through the center overspill pipe.
- I. The Swirl Cleanse screen to be 14 gauge (minimum) grade 316 stainless steel punched plate containing 6mm holes with 51% open area (flat panel). Each plate is then shaped to fit the chamber and covered in a polythene or powder coat (black) approximately 1mm (1/32 inch) thick reducing the aperture size to 4mm (1/6 inch). The screen will incorporate approximately an 8 degree slope towards the screenings removal outlet.

Sedimentation, Screening, & Disinfection in One Device

Product Profile

The Storm King[®] is an advanced hydrodynamic vortex separator that incorporates an optional self-cleansing, non-powered Swirl Cleanse screening system to provide screening to 4mm in diameter. The Storm King[®] is a proven technology which combines grit removal, primary treatment equivalency (TSS and BOD removal), floatables control and in-vessel disinfection within a single unit process. The system is ideal for satellite or centralized treatment at overflow sites because it is self-activating, has no moving parts and requires no power to separate solids.

Applications

- Floatables control, primary treatment equivalency and disinfection of combined sewer overflows (CSOs) and wet weather induced flows
- Remote or unmanned treatment facilities
- Treatment of excess wet weather flows at centralized facilities or POTWs
- Retrofit or new wet weather treatment facilities
- Preliminary treatment prior to storage or equalization

Advantages

- · No power and no moving parts
- · Self-activating with a small footprint
- · Fine grit removal and primary treatment equivalency
- · Combines three unit processes in a single device
- Higher effluent standards can be achieved with the addition of coagulants and flocculants
- Captured material returned to sanitary flow thereby eliminating the need for residuals handling capabilities at remote sites

How it Works

Tow is introduced tangentially into the side of the Storm King[®] barrel causing the contents to rotate slowly about the vertical axis. The flow pirals down the perimeter allowing solids to settle out by gravity. This process is aided by rotary forces, shear forces and drag forces at the boundary layer on the wall and base of the vessel.

The internal components direct the main flow away from the perimeter and back up the middle of the vessel as a broad spiraling column, rotating at a slower velocity than the outer downward flow. A dip plate locates the shear zone, the interface between the outer downward circulation and the inner upward circulation, where a marked difference in velocity encourages further solids separation. Settled solids are directed to the helical channel located under the center cone and are conveyed out of the main chamber through the underflow outlet.

The flow passes down through the Swirl Cleanse screen which captures all floatables and neutrally buoyant material greater than 4mm in diameter. The air regulated siphon provides an effective backwash mechanism to prevent the screen from blinding. Screened effluent is

discharged into a receiving watercourse, a storage facility, or continues on to receive further treatment. (light blue arrow).

The collected screenings and settled solids from the underflow are pumped or gravity fed from the base of the unit and returned to the sanitary flow to continue on to the wastewater treatment facility.

Bacteria reduction is achieved within the Storm King[®] by introducing chemicals such as Sodium Hypochlorite, Peracetic Acid, or Chlorine Dioxide Into the upstream diversion structure or into the inlet pipe of the vessel. The spiraling action integral to the system combined with the predictable flow path of the separator allows the unit to combine its sollds and grit removal duties with disinfection.

echlorination (if applicable) is performed at the discharge of the siphon.

Performance

- Screening to 4mm in diameter
- Proven high rate disinfection in less than 8 minutes

Disinfection

The Storm King[®] has a long history of providing protection to watercourses. However, it is not widely known that the Storm King[®] can provide solids removal and disinfection in the same vessel. Taking advantage of the separator's complex flow paths created by the unique internal components, the Storm King[®] can provide excellent efficiencies while occupying less than 30% of the area required for conventional disinfection solutions.

The Storm King[®] is able to achieve 3 to 4 log kills of total or fecal coliform bacteria within an 8 minute hydraulic retention time and handle commonly available disinfectants such as Sodium Hypochlorite, Peracetic Acid, or Chlorine Dioxide.

Storm King® 5,600 gal

Comparisons of Disinfection Area Required for Storm King® and Conventional Disinfection Tanks

CFD simulation showing predicted fecal coliform kills in Storm King[®] (survival color code: Red is alive and blue is dead).

Maintenance

The Storm King[®] with Swirl Cleanse has no moving parts and typically requires no higher maintenance commitment than the sewer system in which it is placed.

The maintenance requirement is dependent upon the influent characteristics, which in turn are dependent upon the nature of the contributing system.

Once the device has been brought on-line, the Storm King^e and Swirl Cleanse screen should be visually inspected after the first two spill events. After the initial inspections, visual inspection of the equipment should be carried out twice per year, or as deemed appropriate for the location.

APPENDIX R

ALTERNATIVE 2 PROCESS FLOW DIAGRAM

ſ

APPENDIX S

 $\int_{-\infty}^{+\infty}$

 \bigcirc

Ć

ALTERNATIVE 2 SITE PLAN

.

APPENDIX T

ALTERNATIVE 2 FORCE MAIN ALIGNMENT

(

APPENDIX U

ALTERNATIVE 3 PROCESS FLOW DIAGRAM

3

(

 \cap

APPENDIX V

 $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$

 $\sum_{i=1}^{n}$

ALTERNATIVE 3 SITE PLAN

APPENDIX W

PROJECT COST ESTIMATES

(

Summary of Alternatives

Planning Cost Estimate

Alternative	Construction Cost		Project Cost	
Alternative 1 - Peak Flow Treatment	\$	5,939,000	\$	7,424,000
Alternative 2 - Pump to MACM with Storage	\$	12,408,000	\$	15,511,000
Alternative 3 - WWTP Improvements with Storage	\$	10,325,000	\$	12,907,000

•

Duquesne WWTP Long Term Control Plan

Conveyance System Upgrades

Planning Cost Estimate

ITEM	COST	
Gravity Relief Sewers	\$	170,000
SUBTOTAL CONSTRUCTION COST	\$	170,000
Mobilization/Demobilization/Bonds/Insurance (15%)	\$	26,000
Contingency (30%)	\$	51,000
TOTAL CONSTRUCTION COST	\$	247,000
Engineering, Permitting, Legal (15%)	\$	38,000
Construction Administration (10%)	\$	25,000
TOTAL PROJECT COST	\$	310,000

.
-

	Gravity Relief Sewe	ers					
-	Description	Qnty	Unit		Cost		Total
Div 2	Sitework						
	Sewer Pipe					r –	
	24" Sewer Pipe						
	0'-8'	310	LF	\$	114.00	\$	35.340.00
	15" Sewer Pipe						
	8' 12'	715	LF	\$	132.00	\$	94.380.00
	M.H. 0-6' Deep with Standard Frame and Cover (4' Diameter)	5	EA	\$	2.150.00	\$	10,750.00
	Watertight Manhole Frame and Cover	5	EA	\$	499.00	\$	2.495.00
	Manhole Barrel over 6VF (4' Dia)	12	VF	\$	115.00	\$	1,380,00
	Select Backfill	364	CY	Ŝ	29.00	\$	10,568,89
	Filter Fence	1.025	LF	\$	3.00	ŝ	3 075 00
	Municipal Road Trench Repair	100	LF	\$	42.00	\$	4 200 00
	Exploratory Excavation	10	EA	ŝ	270.00	\$	2 700 00
	Closed Circuit TV Inspection-Sewers	1.025	LF	\$	2.00	\$	2 050 00
	Inflow Protectors	5	EA	\$	63.00	\$	315.00
	Mismarked or Unmarked Utility Restoration			F			010.00
	Natural Gas - 1/2" to 8"	10	EA	\$	52.00	\$	520.00
	Electric - Any Size or Voltage	10	EA	Ŝ	52.00	\$	520.00
	Telephone - Any Size	10	EA	ŝ	52.00	\$	520.00
	Storm Sewer - Any Size	10	FA	\$	52.00	\$	520.00
	Waterline - Any Size	10	FA	\$	52.00	\$	520.00
				Ψ.	02.00	Ψ	520.00
	Subto	tal Gravity	Con	str	uction =	\$	169,854
			Co	st	per LF =	\$	165.71

Duquesne WWTP Long Term Control Plan

Alternative 1 - Upgrade WWTP

Planning Cost Estimate

r

.

٠

ITEM	COST
General Site Work	\$ 182,000
Headworks	\$ 743,000
Influent Pump Station	\$ 996,000
Peak Flow Treatment	\$ 1,039,000
Clarifier Efficiency Improvements	\$ 533,000
SUBTOTAL CONSTRUCTION COST	\$ 3,493,000
Electrical Costs (25%)	\$ 874,000
Mobilization/Demobilization/Bonds/Insurance (15%)	\$ 524,000
Contingency (30%)	\$ 1,048,000
TOTAL CONSTRUCTION COST	\$ 5,939,000
Engineering, Permitting, Legal (15%)	\$ 891,000
Construction Administration (10%)	\$ 594,000
TOTAL PROJECT COST	\$ 7,424,000

		S	ite Work			· · · · · · · · · · · · · · · · · · ·				
			Qty	Unit		Price per Unit		Materials		Total
Division 2	Site Work			├ ──	┢──		┢──		 	
		E&S Controls		lot	\$	10,000.00	\$	10.000.00	\$	10,000,00
L		By-Pass Pumping	1	lot	\$	50,000.00	Ŝ	50.000.00	Š	50,000,00
L		Site Paving	478	s.y.	\$	50.00	\$	23.888.89	ŝ	23.888.89
<u> </u>		Lawn Restoration		lot	\$	5,000.00	\$	5,000.00	\$	5,000.00
Division 3	Concrete			├ ──'	┝		 			
		Repairs/Rehabilitation	1	lot	\$	10.000.00	\$	10.000.00	s	10 000 00
L		Manholes (0'-8' Deep)	3	ea	<u>ا</u>	\$2,500.00	ŝ	7.500.00	Š	7,500.00
		Manhole VF over 8' Deep	25	v.f.		\$110.00	\$	2,750.00	\$	2,750.00
Division 15	- Accherical						\$			
DIVISION 15			!	<u> </u>						
		24" D.I. Pipe - F.M.	100	L.F.	\$	125.00	\$	12,500.00	\$	12,500,00
		30" PVC Pipe (Buried) - Gravity	300	L.F.	\$	200.00	\$	60,000.00	\$	60,000.00
				لـــــــ	L				L	
ĺ						Subtotal	Co	nstruction =	\$	181,638.89

	·		Headwor	ks	.					
			Qty	Unit		Price per Unit		Materials		Total
Division 2	Site Work						-			
		Excavation	416.7	C.Y.	\$	50,00	s	20,833,33	s	20 833 3
		Backfill	104.2	C.Y.	\$	50.00	Ś	5,208,33	Š	5.208.3
		Stone Backfill	66.67	c.y.	\$	172.00	\$	11,466.67	\$	11,466.6
Division 3	Concrete	-		 	<u> </u>					
	-	Foundation Slab	84.33	C V	s	532 10	\$	AA 973 77	e	AA 972 7
		First Floor Slab	56.22	C V	Ś	1 123 40	\$	63 157 55	e	63 157 5
		Walls	53.33	c.y.	\$	1,123.40	\$	59,914.67	\$	59,914.6
Division 4	Masonry									
		Block	1200	s.f.	s	8.35	s	10.020.00	s	14 923 8
									Ť	11,020.0
DIVISION 5	Metals	Aluminum Grating	150	of	e	65.00	¢	0.750.00	0	0.750.0
		Aluminum Handrail	200	3.1.	e	70.00	4	9,750.00	<u>-</u>	9,750.0
		4'x4' Aluminum Hatchway	200	each.	të-	3 500 00	3	14,000.00	\$	14,000.0
		Stairs	60	riser	\$	185.00	\$	11,100.00	\$	16.532.3
Division 7	Thormol and Mainture							· · · · · ·		
		Macona Insulation				1.54		4 532 44		
		Roofing	1200	S.T.	9	1.31	\$	1,572.00	\$	2,341.3
		Alum Fascia	100	LOI	3	20,000.00	*	25,000.00	\$	37,235.10
		Akım Soffit	404	5.1. ef	~	7.55	9	3 000 60	2	190.0
		Alum Gutters	100	I F	ŝ	5.00	¢	500.00	<u>e</u>	4,003.1
		Downspouts	48	LF.	\$	4.84	\$	232.32	\$	346.02
Division 8	Doors and Windows									
51110.017 0	Doors and Mindows	7'x3' Mandoor w/wipdow		each	c	1 000 00	¢	1 000 00		1 400 44
		7'x6' Door		each	*	2,500.00	÷.	2,000.00	*	1,409.41
		10'x14' Rolling Garage	1	each	e e	2,000.00	4	7,000,00	÷	3,723.5
		3'x3' window	2	each	ŝ	500.00	ŝ	1,000,00	\$	1 489 4
		4'x4' skylight	2	each	\$	200.00	\$	400.00	\$	595.70
Division 9	Coations									
		Paints	10000	5.f.	\$	2.00	\$	20,000.00	\$	29.788.08
Thuision 11	Equipmont							·		
NAPPORT 1	1-quipment	Coarse Screen (Machanian)			•	004 000 00		001000.00		001000
		Coarse Screen (Manual)		each	3 S	234,000.00	\$ \$	234,000.00	\$	304,200.00
S. 2						.,		.,		,,
JIVISION 15	mechanical	Shrice Gates		each	¢	3 500 00	ę	14 000 00	¢	20.954.64
	1	HVAC		Lot	\$	50,000,00	\$	50 000 00	ŝ	20,001,00 50,000,00
·····	1	· · · · · · · · · · · · · · · · · · ·			*		<u> </u>			00,000.00

Subtotal Construction = \$ 742,004.25

•

			Qty	Unit		Price per Unit		Materials		Total
Division 2	Site Work								·	
		Excavation	305	c.y.	\$	50.00	\$	15.231.48	\$	15.231.48
		Backfill	76	c.y.	\$	50.00	\$	3.807.87	\$	3.807.87
		Stone Backfill	21	c.y.	\$	172.00	\$	3.612.00	\$	3.612.00
		Shoring/Dewatering	1	LOT	\$	50,000.00	\$	50,000.00	\$	50,000.00
Division 3	Concrete							· • · · · · · · · · · · · · · · · · · ·		
		Foundation Slab	62	C.V.	\$	532.10	s	32 990 20	\$	32 990 20
		Elevated Slabs and Walls		c.y.		\$1,123.40	\$	-	•	
Division 5	Metals									
		6'x6' Aluminum Hatchway	2	each	\$	5,000.00	\$	10,000.00	\$	10,000.00
Division 11	Equipment									
		Normal Flow Pumps (1 MGD EA)	3	each	\$	50,000.00	\$	150.000.00	\$	150,000,00
		Storm Pumps (5 MGD EA)	3	each	\$	75,000.00	\$	225.000.00	\$	225,000,00
		MCC	1	each	\$	300,000,00	Ś	300.000.00	\$	300,000,00
		PLC and Controls	1	each	\$	100,000.00	\$	100.000.00	\$	100.000.00
		Bridge Crane	1	each	\$	25,000.00	\$	25,000.00	\$	25,000.00
Division 15	Mechanical	·			····					
		Wet Well and Valve Vault Piping	1	LOT	\$	80,000.00	\$	80,000.00	\$	80,000.00

٠

Subtotal Construction = \$ 995,641.55

		Peak Flow Treat	ment					
			Qty	Unit		Price per Unit		Total
Division 2	Site Work					······································	<u> </u>	
		Excavation	74.07	C.V.	\$	50.00	\$	3 703 70
		Backfill	18.52	<u>c.v.</u>	ŝ	50.00	\$	975.93
		Stone Backfill	165.3	C.V.	\$	172.00	\$	28 436 76
		Excavation/Shoring/Dewatering/Backfill	1	LOT	\$	50,000.00	\$	50,000.00
Division 3	Concrete							•
		Foundation Slap	110.2	C.V.	\$	532 10	\$	58 637 12
		First Floor Slab	0	<u>cv</u>	ŝ	1 123 40	ŝ	
		Walls	68.18	C.V.	\$	1 123 40	ŝ	76 593 41
		Columns/Beams		c.y.		.,	•	70,000.41
Division 5	Metals					,		· · ·
		Lintels		each	\$	34.50		· · · · · · · · · · · · · · · · · · ·
		Aluminum Grating	1488	s.f.	\$	65.00	\$	96,720.00
· · · · · · · · · · · · · · · · · · ·		Aluminum Handrail	145.2	L.F.	\$	70.00	\$	10,163.01
Division 11	Equipment							
-		Storm Water Treatment	1	each	\$	541,000,00	\$	703 300 00
		Solids Removal Pump	2	each	\$	5,000.00	\$	10,000,00
		Chlorine System Upgrades	1	each	\$	50,000.00	\$	50,000.00
			.I				\$	1,038,480.23

.

.

.

(\mathcal{I}	

		Clarifie	er Upg	rade	S					
			Qty	Unit		Price per Unit		Materials		Total
Division 11	Equipment									· · · · · · · · · · · · · · · · · · ·
	_	Demolition of Existing Equipment	2	each	\$	10.000.00	\$	20.000.00	\$	20,000,00
		Secondary Clarifier Mechanisms	2	each	\$	84,250.00	\$	168.500.00	Ś	387,550.00
		FRP Weirs, Baffles, Launder Covers	2	each	\$	41,750.00	\$	83,500.00	\$	125,250.00
			<u> </u>	L,	L	Subtotal	Со	nstruction =	\$	532,800.00

 \bigcirc

Duquesne WWTP Long Term Control Plan

Alternative 2 - Pump to MACM with Storage

.

Planning Cost Estimate

ITEM	COST
General Site Work	\$ 120,000
Headworks	\$ 743,000
Property Acquisition and Remediation	\$ 1,097,000
Pump Station and Valve Vault	\$ 1,474,000
Storage Tank	\$ 2,175,000
Force Main to MACM	\$ 1,689,000
SUBTOTAL CONSTRUCTION COST	\$ 7,298,000
Electrical Costs (25%)	\$ 1,825,000
Mobilization/Demobilization/Bonds/Insurance (15%)	\$ 1,095,000
Contingency (30%)	\$ 2,190,000
TOTAL CONSTRUCTION COST	\$ 12,408,000
Engineering, Permitting, Legal (15%)	\$ 1,862,000
Construction Administration (10%)	\$ 1,241,000
TOTAL PROJECT COST	\$ 15,511,000

.

			Site Wor	k			••••••	· · · · · · · · · · · · · · · · · · ·		
			Qty Unit Price per N Unit		Materials			Total		
Division 2	Site Work				<u> </u>	······			ļ	
		E&S Controls	1	lot	\$	10,000,00	\$	10,000,00	\$	10.000.00
		By-Pass Pumping	1	lot	\$	50,000.00	\$	50.000.00	\$	50,000,00
		Site Paving	478	s.y.	\$	50.00	\$	23.888.89	ŝ	23,888,89
		Lawn Restoration	1	lot	\$	5,000.00	\$	5,000.00	\$	5,000.00
Division 3	Concrete							····		······
		Repairs/Rehabilitation		lot	\$	10,000,00	\$	10 000 00	¢	10 000 00
		Manholes (0'-8' Deep)	3	ea	<u> </u>	\$2,500.00	\$	7 500 00	\$	7 500 00
		Manhole VF over 8' Deep	25	v.f.		\$110.00	\$	2.750.00	\$	2,750.00
Division 15	Mechanical						\$			
		30" PVC Pipe (Buried) - Gravity	50	L.F.	\$	200.00	\$	10,000.00	\$	10.000.00
	_ I	I								
						Subtotal	Co	nstruction =	\$	119,138.89

		· · · · · · · · · · · · · · · · · · ·	Headwor	KS	r—				,	
			Qty	Unit		Price per Unit		Materials		Total
Division 2	Site Work				┝			· · · · · · · · · · · · · · · · · · ·		
-		Excavation	416.7	C.Y.	\$	50.00	S	20.833.33	s	20 833 3
		Backfill	104.2	C.Y.	\$	50.00	\$	5.208.33	Ś	5 208 3
		Stone Backfill	66.67	C.y.	\$	172.00	\$	11,466.67	\$	11,466.6
Division 3	Concrete								<u> </u>	
		Foundation Slab	84 33	CV	l e	532 10	-	44 973 77		44 070 7
		First Floor Slab	56 22	<u>cv</u>	Ť	1 123 40	4	44,073.77 63 157 55	4	44,073.7
		Walls	53.33	<u>c.y.</u>	\$	1,123.40	\$	59,914.67	\$	59.914.6
Division 4	Masonn			ļ						
511101011 4	masoniy	Block	1200	s.f.	s	8.35	s	10 020 00	5	14 023 8
					Ť		¥.	10,020.00	⊢ ₩	14,523.04
Division 5	Metals	Aluminum Croting								
		Aluminum Vandrail	150	<u> S.I.</u>	3	65.00	5	9,750.00	5	9,750.0
•		Ava Aluminum Hotelum	200		15	70.00	5	14,000.00	\$	14,000.0
		Steire	1	eacn	\$	3,500.00	\$	3,500.00	\$	5,212.9
		Stans	60	riser	15	185.00	\$	11,100.00	\$	16,532.39
Division 7	Thermal and Moisture				-			· · · · · · · · · · · · · · · · · · ·		
		Masonry Insulation	1200	s.f.	\$	1.31	\$	1.572.00	S	2.341.34
		Roofing	1	Lot	\$	25,000.00	\$	25,000,00	Ś	37.235.10
		Alum Fascia	100	s.f.	\$	5.35	\$	535.00	\$	796.83
		Alum Soffit	404	s.f.	\$	7.65	\$	3,090.60	\$	4,603.1
		Alum Gutters	100	L.F.	\$	5.00	\$	500.00	\$	744.70
		Downspouts	48	L.F.	\$	4.84	\$	232.32	\$	346.02
Division 8	Doors and Windows									
		7'x3' Mandoor w/window	1	each	\$	1,000,00	\$	1 000 00	\$	1 489 40
		7'x6' Door	1	each	\$	2 500.00	ŝ	2 500 00	\$	3 723 51
		10'x14' Rolling Garage	1	each	Ś	7.000.00	Š	7.000.00	Š	10 425 83
		3'x3' window	2	each	\$	500.00	\$	1,000.00	Ŝ	1,489.40
		4'x4' skylight	2	each	\$	200.00	\$	400.00	\$	595.70
Division 9	Coatings									
		Paints	10000	s.f.	\$	2.00	\$	20,000.00	\$	29,788.08
Division 11	Equipment				_					
		Coarse Screen (Mechaniceh		each	•	234 000 00		224 000 00	e .	204.000.00
		Coarse Screen (Manual)	1	each	\$	7.500.00	\$	234,000.00	3 \$	7 500.00
Divisio- 45	Manhaniaat				· .		· · · · ·		· · · · · · · · · · · · · · · · · · ·	.,
LIVISION 15	_imechanical	Sluice Gotor		a a ch		0 500 60	*	44 688 55		
				each	\$	3,500,00		14,000.00	\$	20,851.66
	1			LOL	\$	50,000.00	\$	50,000.00	\$	50,000.00
		·				I				
						Subtotal	Co	nstruction =	\$	742.004.25

 \bigcap

		Influent Pu	mp Stati	on a	nd	Valve Vault				
			Qty	Unit		Price per Unit		Materials		Total
Division 2	Site Work							······································		
		Excavation	513	C.Y.	\$	50.00	\$	25.648.15	\$	25 648 15
		Backfill	128	c.y.	\$	50.00	\$	6,412.04	Š	6,412,04
		Stone Backfill	21	c.y.	\$	172.00	\$	3.612.00	\$	3.612.00
		Shoring/Dewatering	1	LOT	\$	50,000.00	\$	50,000.00	\$	50,000.00
Division 3	Concrete					*	<u> </u>			
	·	Foundation Slab	62		\$	532 10	\$	32 000 20	e	32 000 20
		Elevated Slabs and Walls	191	C.V.	Ť	\$1,123,40	ŝ	214 569 40	\$	214 569 40
						+ + + + + + + + + + + + + + + + + + + +	F	211,000,10	₩	217,003.70
Division 5	Metals									
		6'x6' Aluminum Hatchway	2	each	\$	5,000.00	\$	10,000.00	\$	10,000.00
Division 11	Equipment									
• • • • • • • • • • • • • • • • • • • •		Normal Flow Pumps	3	each	\$	75,000,00	\$	225 000 00	¢	225 000 00
		Storm Pumps	3	each	Ś	100,000,00	1 š	300,000,00	ŝ	300.000.00
	1	MCC	1	each	\$	300,000,00	ŝ	300,000,00	\$	300,000,00
		PLC and Controls	1	each	Ś	100.000.00	Ŝ	100 000 00	\$	100,000,00
		Bridge Crane	1	each	\$	25.000.00	Ś	25,000,00	\$	25 000 00
		Grinder Unit	1	each	\$	100,000.00	\$	100,000.00	\$	100,000.00
Division 15	Mechanical					·····				
	+	Wet Well and Valve Vault Piping		LOT	s	80,000,00	\$	80.000.00	\$	80 000 00
					<u>-</u>		<u>├</u>		- -	00,000.00

Subtotal Construction = \$ 1,473,231.79

			Storage	e Ta	nks)			· · · · · · · · · · · · · · · · · · ·
			Qty	Unit		Price per Unit	Materials		Total
Division 2	Site Work						 	<u> </u>	· · · · · · · · · · · · · · · · · · ·
		Excavation	2909	c.y.	\$	50.00	\$ 145,444.10	\$	145,444,10
		Backfill	2727	c.y.	\$	50.00	\$ 36,361.03	\$	36,361.03
		Stone Backfill	908	<u>c.y.</u>	\$	172.00	\$ 156,162.29	\$	156,162.29
Division 3	Concrete					·····	 		
		Foundation Slab	605	c.y.	\$	532.10	\$ 322,069.59	\$	322,069.59
Division 11	Equipment						 		
		Storage Tanks	1	LOT	\$	950,230,67	\$ 950.230.67	\$	950 230 67
		Walkways	1	LOT	\$	200,000.00	\$ 200.000.00	Ś	200.000.00
	+	Storage Basin Dewatering Pumps	2	each	\$	30,000.00	\$ 60,000.00	\$	60,000.00
Division 15	Mechanical						 		
		24" D.I. Pipe (Force Main)	2025	L.F.	\$	150.00	\$ 303,750.00	\$	303,750.00
		_l			- <u></u>		 	\$	2,174,017.68

• •

		Force N	<u>lain to</u>	MAC	CM				
			Qty	Unit		Price per Unit		Materials	Total
Division 2	Site Work								 ······································
		Select Backfill	1215	c.y.	\$	30.00	\$	36,444,44	\$ 36 444 44
		Filter Fence	16400	L.F.	\$	2.50	Ŝ	41.000.00	\$ 41,000.00
		Municipal Road Repavement	1500	s.y.	\$	50.00	\$	75,000.00	\$ 75,000,00
<u> </u>		Exploratory Excavation	10	ea	\$	270.00	\$	2,700.00	\$ 2,700.00
Division 3	Concrete							······································	
		Manhole 0-8' Deep - 4'-0" Diameter	10	ea	\$	2,150.00	\$	21,500,00	\$ 21 500 00
		Watertight Manhole Frame and Cover	5	ea	\$	500.00	\$	2,500.00	\$ 2,500.00
Division 15	Mechanical							·····	
		12" D.I. Pipe (Buried)	16400	LF.	\$	75.00	\$	1,230,000.00	\$ 1.230.000.00
		Bore 20" Stl. Casing Pipe	1290	L.F.	\$	190.00	\$	245,100.00	\$ 245,100.00
		CCTV Inspection	16400	L.F.	\$	1.50	\$	24,600.00	\$ 24,600,00
		Force Main Testing	16400	L.F.	\$	0.60	\$	9,840.00	\$ 9,840.00

Subtotal Construction = \$ 1,688,684.44

Duquesne WWTP Long Term Control Plan

Alternative 3 - Upgrade WWTP with Storage

Planning Cost Estimate

ITEM	COST
General Site Work	\$ 126,000
Headworks	\$ 743,000
Property Acquisition and Remediation	\$ 1,097,000
Pump Station and Valve Vault	\$ 1,399,000
Storage Tank	\$ 2,175,000
Clarifier Upgrades	\$ 533,000
SUBTOTAL CONSTRUCTION COST	\$ 6,073,000
Electrical Costs (25%)	\$ 1,519,000
Mobilization/Demobilization/Bonds/Insurance (15%)	\$ 911,000
Contingency (30%)	\$ 1,822,000
TOTAL CONSTRUCTION COST	\$ 10,325,000
Engineering, Permitting, Legal (15%)	\$ 1,549,000
Construction Administration (10%)	\$ 1,033,000
TOTAL PROJECT COST	\$ 12,907,000

· .

			Site Wor	k					
			Qty	Unit		Price per Unit		Materials	Total
Division 2	Site Work	······································							
		E&S Controls	1	lot	\$	10.000.00	\$	10.000.00	\$ 10,000,00
		By-Pass Pumping	1	lot	\$	50,000.00	\$	50,000.00	\$ 50.000.00
		Site Paving	478	s.y.	\$	50.00	\$	23,888.89	\$ 23,888.89
		Lawn Restoration	1	lot	\$	5,000.00	\$	5,000.00	\$ 5,000.00
Division 3	Concrete				<u> </u>				
		Repairs/Rehabilitation	1	lot	\$	10.000.00	\$	10.000.00	\$ 10,000,00
		Manholes (0'-8' Deep)	3	ea		\$2,500,00	Ś	7,500.00	\$ 7,500.00
		 Manhole VF over 8' Deep 	25	v.f.		\$110.00	\$	2,750.00	\$ 2,750.00
							\$	-	
Division 15	Mechanical								
		24" D.I. Pipe - F.M.	50	L.F.	\$	125.00	\$	6,250.00	\$ 6,250.00
		30" PVC Pipe (Buried) - Gravity	50	L.F.	\$	200.00	\$	10,000.00	\$ 10,000.00
			I		I	Subtotal	Co	enstruction =	\$ 125,388.89

		Hea	dworks						
			С_ З	të -	Price per Unit	Materials		Total	· · · · · · · · · · · · · · · · · · ·
Division 2	Site Work			╉					
		Excavation	416.7	2	50.00	20.5	22 22	00 000 00	
		Backfill	104.2	>	50.00	5	00.22	E 200 22	
		Stone Backfill	66.67	\$	172.00	\$ 11,4	66.67	11.466.67	
Division 3	Concrete		+	\rightarrow					
		Foundation Stab	84 23	•	50.40				• •
		First Floor Slah	2 2 2		1 102 232.10	5 44 8	73.77	44,873.77	
		Walls	53 23	• • 	1,123.40	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CC.7C	63,157.55	
			2	* :	1, 120.70	n n n n n n n n n n n n n n n n n n n	14.0/	09,914.67	- r
Division 4	Masony			╀			Ť		-
		Block	1200 5	£ S	8.35	10 U	00.00	44 009 09	-
Division E	Watela					2	20.03	14,343.03	· .
	INCIGIS						-		—
		Aluminum Grating	150 s	.f. \$	65.00	\$ 9.7	50.00	9,750,00	-
		Aluminum Handrail	200 L	€. -	70.00	\$ 14.0	00.00	14,000,00	
		4'x4' Aluminum Hatchway	1 6	Sch \$	3,500.00	\$ 3.5	00.00	5 212 91	.
		Stairs	60 ri	Ser 🖇	185.00	\$ 11.1	00.00	16.532.39	-
				$\left \right $					-
DIVISION 7	Thermal and Moisture						╞		_
		Masonry Insulation	1200 3	4) 4)	1.31	\$ 15	72 00 5	0 341 34	-
		Roofing	1	ot \$	25,000.00	\$ 25.0	00.00	37 235 10	
		Alum Fascia	100 5	4. 8	5.35	5	35.00 \$	706.83	_
		Alum Soffit	404 s	f. \$	7.65	\$ 30	90.60	4 ED3 15	
		Alum Gutters	100 L	ц. С	5.00	5	00.00	744 70	
		Downspouts	48	ц,	4.84	6	32.32	346.02	-
				\vdash				70.010	-
	LOORS and Windows			_			-		
		7'x3' Mandoor w/window	1 ee	Ich \$	1,000.00	\$ 1.0	00.00	1.489.40	
		/ X6' Door	1 ea	¢ C	2,500.00	\$ 2,54	00.00	3,723,51	
		10X14 Kolling Garage	1 ea	¢ Ch	7,000.00	\$ 7,0	00.00	10.425.83	·
		13X3 WINDOW	2 ea	ich \$	500.00	\$ 1,0	00.00	1.489.40	
		4'x4' skylight	2 68	ર ક	200.00	\$	00.00	595.76	
Division 9	Coatings		+	╀					
		Paints	10000 \$	\$ 	2.00	\$ 20.00	00.00	20 788 06	
							*	000001/07	
Division 11	Equipment			-					
		Coarse Screen (Mechanical)	1 69	€ Ş	234,000.00	\$ 234.00	00.00	304 200 00	
		Coarse Screen (Manual)	1 ea	় ন্থ	7,500.00	\$ 7.50	00.00	7.500.00	
CL NONSIVIL	Mechanical			_					
		Sluice Gates	4 68(s L	3,500.00	\$ 14,00	00.00	20.851.66	
		HVAC		69) 	50,000.00	\$ 50,00	00.00	50,000.00	
				-			_		
					·				
					SUDIOIZI	onstructio		742,004.25	

 \bigcirc

 \bigcirc

 C_{α}

		Influent Pu	mp Stati	on a	nd	Valve Vault				
			Qty	Unit		Price per Unit		Materials		Total
Division 2	Site Work									
		Excavation	513	C.V.	\$	50.00	\$	25 648 15	\$	25 648 15
-		Backfill	128	c.v.	ŝ	50.00	\$	6 412 04	ŝ	£ 412 04
		Stone Backfill	21	C.V.	Ś	172.00	ŝ	3 612 00	\$	3 612 00
		Shoring/Dewatering	1	LOT	\$	50,000.00	\$	50,000.00	\$	50,000.00
Division 3	Concrete									
		Foundation Slab	62	C.V	\$	532 10	s	32 000 20	e	22,000,20
		Elevated Slabs and Walls	191	c.y.	÷	\$1,123.40	\$	214,569,40	\$	214,569,40
Division 5	Metals									
		6'x6' Aluminum Hatchway	2	each	\$	5,000.00	\$	10,000.00	\$	10,000.00
Division 11	Equipment									
<u>_</u>		Normal Flow Pumps	3	each	\$	50,000,00	¢	150,000,00	*	150,000,00
		Storm Pumps	3	each	÷ ¢	100,000,00	9 e	300,000,00	9	150,000.00
		MCC	1	each	ŝ	300,000,00	÷ S	300,000,00	\$ \$	300,000.00
		PLC and Controls	1	each	ŝ	100,000,00	ŝ	100,000.00	*	100,000.00
		Bridge Crane	1	each	\$	25,000,00	\$	25 000 00	÷.	25,000,00
		Grinder Unit	1	each	\$	100,000.00	\$	100,000.00	\$	100,000.00
Division 15	Mechanical				·					
		Wet Well and Valve Vault Piping		LOT	8	80 000 00	6	80,000,00	6	80.000.00
·····					Ψ	00,000.00	\$	00,000.00	\$	80,000.00

Subtotal Construction = \$ 1,398,231.79

	1	T	Storag	<u>e la</u>	nks	5		·····	.	
			Qty	Unit		Price per Unit		Materials		Total
Division 2	Site Work				<u> </u>				 	•
· · · · · · · · · · · · · · · · · · ·		Excavation	2909	c.y.	\$	50.00	\$	145,444,10	\$	145 444 10
		Backfill	727	c.y.	\$	50.00	\$	36,361.03	s	36,361.03
	· [·	Stone Backfill	908	c.y.	\$	172.00	\$	156,162.29	\$	156,162.29
Division 3	Concrete			<u> </u>	[ļ			
····	-	Foundation Slab	605	c.y.	\$	532.10	\$	322,069.59	\$	322,069.59
Division 11	Equipment		<u> </u>		<u> </u>					
		Storage Tanks	1	LOT	\$	950,230,67	\$	950 230 67	\$	050 220 67
		Walkways	· 1	LOT	\$	200.000.00	ŝ	200,000,00	÷	200,230.07
		Storage Basin Dewatering Pumps	2	each	\$	30,000.00	\$	60,000.00	\$	60,000.00
Division 15	Mechanical									
		24" D.I. Pipe (Force Main)	2025	L.F.	\$	150.00	\$	303 750 00	\$	303 750 00
									Ψ	000,700.00

(

		Clarifie	er Upg	rade	s					
			Qty	Unit		Price per Unit		Materials		Total
Division 11	Equipment								<u> </u>	
		Demolition of Existing Equipment	2	each	\$	10,000.00	\$	20.000.00	\$	20,000,00
		Secondary Clarifier Mechanisms	2	each	\$	84,250.00	\$	168,500,00	Ŝ	387,550,00
		FRP Weirs, Baffles, Launder Covers	2	each	\$	41,750.00	\$	83,500.00	\$	125,250.00
			<u> </u>	I						
						Subtotal	Co	nstruction =	\$	532,800.00

APPENDIX X

FINANCIAL CAPABILITY ASSESSMENT ALTERNATIVE 1

 $\left(\begin{array}{c} - 1 \\ - 1 \end{array} \right)$

(

Schedule 6. AFFORD

Ċ

Schedule 6. CSO AFFORDABILITY

(FORM LTCP-	EZ)	> Attach to FORM LTCP-EZ	Attachment	(06
Community nar	me show	In on FORM LTCP-EZ	ES number	;	Jata
City of Duque	sne - M	funicipal Authority of the City of McKeesport		ľ	Jale
	ALT	FERNATIVE 1	1026081		
Current	1	Annual operations and maintenance expenses (excluding depreciation). See inst	fructions		¢400
Costs	2	Annual debt service (principal and interest). See instructions			
	3	Current Costs. Add lines 1 and 2.			φου4, ¢1.000
Projected	4	Projected annual operations and maintenance expenses (excluding depreciation)	See instructions		φ1,UZZ, ¢ΕΛ
Costs	5	Present value adjustment factor. See instructions.	1. 000 misa adalams.	5	,00¢ 1 0
(Current	6	Present value of projected costs, Multiply line 4 by line 5.			1.0
Dollars)	7	Projected debt costs. See instructions.			,005 \$7,404
	8	Annualization factor. See instructions,			به ۲,424, ۵ ۵
	9	Annual debt service (principal and interest) for projected WWT facilities and CSO	controle	0	0.0 \$450
		Multiply line 7 by line 8.	0010013.		\$409,
	10	Projected Costs, Add lines 6 and 9.			\$500
Total Costs	11	Total current and projected WWT and CSO costs. Add lines 3 and 10		10	\$009, \$1,520
Cost Per	12	Residential WWT flow (MGD). See instructions		42	¥1,032,
Household	13	Total WWT flow (MGD). See instructions			2
	14	Fraction of total WWT flow attributable to residential users. Divide line 12 by line :	13	13	Z.
	15	Residential share of total costs. Mulitply line 11 hy line 14	15.	14],
	16	Number of households in service area. See instructions		10	\$1,532,
	17	Cost Per Household (CPH) Divide line 15 by line 19		10	1,
Median	18	Capsus Vear MHI Sea instructions		17	\$799
Household	19	MHI adjustment factor. Soo instructions		18	\$20,
Income	20	Adjusted MHI Multiply ling 18 by ling 10		19	1,0
Dealdential				20	\$21,
ndiastar	21	Annual www.r/CSO control CPH as % adjusted MHI. Divide line 17 by line 20, then	n multiplý by 100.	21	3.79
Rend Detter		Residential Indicator. See Instructions.		22	Н
Bond Rating	23 8	Date of most recent general obligation bond		23a	N/A
	ם	Rating agency (Moody's or Standard and Poor's)		23b	N/A
	0	Rating (Moody's Aaa-C or Standard and Poor's AAA-D)		23c	N/A
	24 a	Date of most recent revenue (water or sewer) bond		24a	N/A
	0	Rating agency (Moody's or Standard and Poor's)		24b	N/A
	ت بر			24c	N/A
	25 U	Raung (Moody's Ada-C or Standard and Poor's AAA-D)		24d	N/A
Overall Net	20	Direct act debt (C.O. based such is		25	N/A
Debt	20	Direct net debt (G.O. bonds excluding double-barreled bonds). See instructions.		26	\$1,964,0
Denr	21	Dept of overlapping entrues (proportionate share of multijurisdictional debt). See in	structions.	27	
	20	Evil method areas to unles 26 and 27.		28	\$1,964,0
	23	Puil market property value (MPV), See instructions.		29	\$141,660,4
	24	Net Debt Repetered. See instruction MPV. Divide line 28 by line 29, then multiply by	/ 100.	30	1.
Inamniov.	22	Net Dept Benchmark. See instructions		31	Stro
nant Data	32	Source Consume 2000 0000 a service area. See instructions.		32	21.7
non rate	22	Source: Census 2008-2012 American Community Survey			
	33	Source Concurses Concurs and American Concurs (use if permittee's rate is unavailable). Se	e instructions.	33	7.5
	24	Average patienal upper la merican Community Survey			
	94	Sources Census 2008 0040 Amount acte See instructions.		34	6.7
	2E	Source. Jensus 2006-2012 American Community Survey	L		
	33	onemployment kate Benchmark. See instructions.		35	Wea

Schedule 6. AFFORD

 $\left(\right)$

(

(

Schedule 6. AFFORD - CSO Affordability

(FORM LTCP-EZ	3		Attachment		
		> Attach to FORM LTCP-EZ	Sequence #		
Community name	show	n on FORM LTCP-EZ	NPDES number		Date
City of Duquesr	ie - Mi	inicipal Authority of the City of McKeesport			
	ALT	ERNATIVE 1	PA0026981		8/25/14
Median	36	Median household income - permittee. Copy from line 20.		36	\$21,072
Household		Source: Census 2008-2012 American Community Survey			
Income	37	Census Year national MHI. See instructions.		37	\$53,046
		Source: Census 2008-2012 American Community Survey			
	38	MHI adjustment factor. Copy from line 19.		38	1.0363
	39	Adjusted national MHI. Multiply line 37 by line 38.		39	\$54 973
	40	MHI Benchmark. See instructions.		40	Weak
Financial	41	Full market value of real property. Copy from line 29.		41	\$141 660 440
Management	42	Property tax revenues. See instructions.		42	\$1 136 286
Indicators	43	Property tax revenues as a percent of full MPV. Divide line 42 by line 41, then	multiply by 100	43	0,130,200
	44	Property Tax Benchmark. See instructions.		44	U.OU Strong
Property Tax	45	Property Taxes Levied. See instructions.		45	\$1 455 050
and Collection	46	Property Tax Revenue Collection Rate, Divide line 42 by line 45, then multiply	v by 100	45	φ1,400,000 79.00
Rate	47	Collection Rate Benchmark. See instructions.	<i></i>	40	Veak
Matrix Score	48	Enter benchmark and corresponding score	Benchmark Score		Hean
	a	Bond Rating. From line 25. 48a			
	b	Net Debt. From line 31. 48b	Strong 3		
	C	Unemployment Rate. From line 35. 48c	Weak 1		
	d	Median Household Income. From line 40. 48d	Weak 1		
	e	Property Tax. From line 44. 48e	Strong 3		
	f	Collection Rate. From line 47. 48f	Weak 1		
	g	Sum. Sum up scores. 48g	9		
	49	Permittee indicators score. Divide line 48g by number of scores.		49	1.80
	50	Permittee Financial Capability Indicators Benchmark. See instructions.		50	Mid-Range
	51	Residential indicator benchmark. Copy from line 22.		51	High
	52	Financial Capability (High Burden, Medlum Burden, or Low Burden). See	instructions.	52	HIGH

APPENDIX Y

FINANCIAL CAPABILITY ASSESSMENT ALTERNATIVE 2

 $\left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)$

(

Schedule 6. AFFORD

C

(

Schedule 6. CSO AFFORDABILITY

(FORM LTCP	·EZ)	> Attach to FORM LTCP-EZ	Attachment Sequence #	06
Community na	me sho	wn on FORM LTCP-EZ	DES number	Date
City of Duque	esne - l	Municipal Authority of the City of McKeesport		Duio
	Al	TERNATIVE 2	0026981	8/25/14
Current	1	Annual operations and maintenance expenses (excluding depreciation). See in	structions.	1 \$488.26
Costs	2	Annual debt service (principal and interest). See instructions.		2 \$534.66
······································	3	Current Costs. Add lines 1 and 2.		3 \$1,022,92
Projected	4	Projected annual operations and maintenance expenses (excluding depreciation	n). See instructions.	4 9
Costs	5	Present value adjustment factor. See instructions.		5 1.000
(Current	6	Present value of projected costs. Multiply line 4 by line 5.		6 9
Dollars)	7	Projected debt costs. See instructions.		7 \$15,511,00
	8	Annualization factor. See instructions.		8 0.062
	9	Annual debt service (principal and interest) for projected WWT facilities and CS Multiply line 7 by line 8.	O controls.	9 \$960,91
	10	Projected Costs. Add lines 6 and 9.		n seen of
Total Costs	11	Total current and projected WWT and CSO costs. Add lines 3 and 10	1	1 \$1,983,83
Cost Per	12	Residential WWT flow (MGD). See instructions	1	2 2 50
Household	13	Total WWT flow (MGD). See instructions	1	3 2.50
	14	Fraction of total WWT flow attributable to residential users. Divide line 12 by line	∋ 13. 1/	4 1.00
	15	Residential share of total costs. Mulitply line 11 by line 14.	1	5 \$1 083 83
	16	Number of households in service area. See instructions,	1(φ1,300,00 6 1 01
	17	Cost Per Household (CPH). Divide line 15 by line 16.	17	\$1.034
Median	18	Census Year MHI. See instructions.	18	\$20.33
Household	19	MHI adjustment factor. See instructions.	19	1 036
Income	20	Adjusted MHI. Multiply line 18 by line 19.	20	\$21.07
Residential	21	Annual WWT/CSO control CPH as % adjusted MHI. Divide line 17 by line 20, th	en multiply by 100. 21	4.91
Indicator	22	Residential Indicator. See instructions.	27	Hia
Bond Rating	23	a Date of most recent general obligation bond	238	N/A
		b Rating agency (Moody's or Standard and Poor's)	231	N/A
		c Rating (Moody's Aaa-C or Standard and Poor's AAA-D)	230	N/A
	24	a Date of most recent revenue (water or sewer) bond	24a	N/A
		b Rating agency (Moody's or Standard and Poor's)	24b	N/A
	1	c Bond insurance (Yes/No)	24c	N/A
		d Rating (Moody's Aaa-C or Standard and Poor's AAA-D)	24d	N/A
	25	Bond Rating Benchmark. See instructions.	25	N/A
Overall Net	26	Direct net debt (G.O. bonds excluding double-barreled bonds). See instructions.	26	\$1,964,002
Debt	27	Debt of overlapping entities (proportionate share of multijurisdictional debt). See	instructions. 27	\$0
	28	Overall net debt. Add lines 26 and 27.	28	\$1,964,002
	29	Full market property value (MPV). See instructions.	29	\$141,660,440
	30	Overall net debt as a percent of full MPV. Divide line 28 by line 29, then multiply	by 100. 30	1.39
11	31	Net Debt Benchmark. See instructions	31	Strong
Unemploy-	32	Unemployment rate for permittee service area. See instructions.	32	21.7%
ment kate	20	Source: Census 2008-2012 American Community Survey		
	53	Onemployment rate for permitee's county (use if permittee's rate is unavailable).	See instructions. 33	7.5%
	24	Average potional upgerstand upgerstand and a set of the		
	34	Source: Concurs 2009 2010 American Concurs.	34	6.7%
	35	Unemployment Pata Panahmark San Industry		
		onomproyment Nate Denonmark, See Instructions.	35	Weak

Schedule 6.

AFFORD

 $\left(\right)$

(

(

Schedule 6. AFFORD - CSO Affordability

(FORM LTCP-EZ)	> Attach to FORM LTCP-FZ	Attachmen	t #	
Community name	show	n on FORM LTCP-EZ	NPDES number	#	Date
City of Duques	ne - M	unicipal Authority of the City of McKeesport			Date
	AL	TERNATIVE 2	PA0026981		8/25/14
Median	36	Median household income - permittee. Copy from line 20.		36	\$21.072
Household		Source: Census 2008-2012 American Community Survey			
Income	37	Census Year national MHI. See instructions.		37	\$53.046
		Source: Census 2008-2012 American Community Survey			+,
	38	MHI adjustment factor. Copy from line 19.		38	1 0363
	39	Adjusted national MHI. Multiply line 37 by line 38.		39	\$54 973
	40	MHI Benchmark. See instructions.		40	Weak
Financial	41	Full market value of real property. Copy from line 29.		41	\$141 660 440
Management	42	Property tax revenues. See instructions.		42	\$1 136 286
Indicators	43	Property tax revenues as a percent of full MPV. Divide line 42 by line	41. then multiply by 100.	43	0.80
	44	Property Tax Benchmark. See instructions.		44	Strong
Property Tax	45	Property Taxes Levied. See instructions.		45	\$1 455 050
and Collection	46	Property Tax Revenue Collection Rate, Divide line 42 by line 45, then	multiply by 100.	46	78.00
Rate	47	Collection Rate Benchmark. See instructions.		47	Weak
Matrix Score	48	Enter benchmark and corresponding score	Benchmark Score	<u> </u>	
	i	a Bond Rating. From line 25.	48a	1	
	1	Net Debt. From line 31.	48b Strong 3	1	
	0	: Unemployment Rate. From line 35.	48c Weak 1	1	
	C	Median Household Income. From line 40.	48d Weak 1		
	e	Property Tax. From line 44.	48e Strong 3	1	
	f	Collection Rate. From line 47.	48f Weak 1	1	
	ç ta	Sum. Sum up scores.	48g 9]	
	49	Permittee indicators score. Divide line 48g by number of scores.		49	1.80
	50	Permittee Financial Capability Indicators Benchmark. See instruct	ions.	50	Mid-Range
	51 52	Residential indicator benchmark. Copy from line 22.		51	High
	92	manufal vapasity (righ burden, mealum Burden, or Low Burde	en). See instructions.	52	HIGH

APPENDIX Z

FINANCIAL CAPABILITY ASSESSMENT ALTERNATIVE 3

 $\left(\begin{array}{c} \\ \\ \end{array} \right)$

(

 $\left(\begin{array}{c} \end{array} \right)$

Schedule 6. AFFORD

(

(

Ć

Schedule 6. CSO AFFORDABILITY

(FORM LTCP-I	EZ)	> Attach to FORM LTCP-EZ	Attachme	ent o.#	06
Community nar	ne shov	In on FORM LTCP-EZ	IPDES number	5 11	Data
City of Duque	sne - N	funicipal Authority of the City of McKeesport	IT DES NUMBER		Dale
	AL	TERNATIVE 3	20026081		9/25/14
Current	1	Annual operations and maintenance expenses (excluding depreciation). See	instructions	1	0/20/14 ¢/00/067
Costs	2	Annual debt service (principal and interest). See instructions		2	\$524 660
	3	Current Costs. Add lines 1 and 2.		2	¢334,000 \$1 022 027
Projected	4	Projected annual operations and maintenance expenses (excluding depreciati	on). See instruction	4	\$50,000
Costs	5	Present value adjustment factor. See instructions.		5	1,000
(Current	6	Present value of projected costs. Multiply line 4 by line 5.		6	\$50,000
Dollars)	7	Projected debt costs. See instructions.		7	\$12 907 000
	8	Annualization factor. See instructions.			0.0620
	9	Annual debt service (principal and interest) for projected WWT facilities and C	SO controls.	9	\$799,594
		Multiply line 7 by line 8.			+
	10	Projected Costs. Add lines 6 and 9.		10	\$849 594
Total Costs	11	Total current and projected WWT and CSO costs. Add lines 3 and 10		11	\$1.872.520
Cost Per	12	Residential WWT flow (MGD). See instructions		12	2.500
Household	13	Total WWT flow (MGD). See instructions		13	2.500
	14	Fraction of total WWT flow attributable to residential users. Divide line 12 by li	ne 13.	14	1.000
	15	Residential share of total costs. Mulitply line 11 by line 14.	ĺ	15	\$1.872.520
	16	Number of households in service area. See instructions.		16	1.919
	17	Cost Per Household (CPH). Divide line 15 by line 16.	ĺ	17	\$976
Median	18	Census Year MHI. See instructions.		18	\$20,333
Household	19	MHI adjustment factor. See instructions.	ŀ	19	1.0363
Income	20	Adjusted MHI. Multiply line 18 by line 19.		20	\$21.072
Residential	21	Annual WWT/CSO control CPH as % adjusted MHI. Divide line 17 by line 20, t	hen multiply by 100	21	4.63
Indicator	22	Residential Indicator. See instructions.		22	High
Bond Rating	23	a Date of most recent general obligation bond		23a	N/A
		b Rating agency (Moody's or Standard and Poor's)	ľ	23b	N/A
		c Rating (Moody's Aaa-C or Standard and Poor's AAA-D)	ľ	23c	N/A
	24 :	a Date of most recent revenue (water or sewer) bond	ľ	24a	N/A
		b Rating agency (Moody's or Standard and Poor's)	ſ	24b	N/A
	(c Bond insurance (Yes/No)	Γ	24c	N/A
		d Rating (Moody's Aaa-C or Standard and Poor's AAA-D)	E E	24d	N/A
Dunnell Mad	25	Bond Rating Benchmark. See instructions.		25	N/A
Uverali Net	20	Direct net debt (G.O. bonds excluding double-barreled bonds). See instructions	S	26	\$1,964,002
Dept	21	Debt of overlapping entities (proportionate share of multijurisdictional debt). Se	e instructions.	27	\$0
	20 20	Overall net debt. Add lines 26 and 27.	Ļ	28	\$1,964,002
	29 20	Put market property value (MPV). See instructions.		29	\$141,660,440
	24	Not Debt Banchmark. See instructions	r by 100.	30	1.39
Inemploy-	32	Inemployment rate for permittee conting group. See instructions		31	Strong
nent Rate	VL	Source: Census 2008-2012 American Community Survey		32	21.7%
	33	Upemployment rate for permittee's county (use if permittee's rate is uperviled to	One instructions		7.54
		Source: Census 2008-2012 American Community Survey	. See instructions.	33	7.5%
	34	Average national unemployment rate. See instructions	─── ┣	24	0 701
		Source: Census 2008-2012 American Community Survey		34	0.1%
	35	Unemployment Rate Benchmark, See instructions.	ŀ	35	Week
				~~	TTEAN

Schedule 6. AFFORD

 $\left(\right)$

(

(

Schedule 6. AFFORD - CSO Affordability

(FORM LTCP-EZ)	Attach to EOBM I TOD E7		•	Attachmo	ənt	
Community					Sequenc	6#	
Community name	SNOW		N	PDES numbe	er		Date
City of Duquesh	e - M.	unicipal Authority of the City of McKeesport					
Madley	ALI	ERNATIVE 3	P	40026981			8/25/14
Median	35	Median household income - permittee. Copy from line 20.				36	\$21,072
Household		Source: Census 2008-2012 American Community Survey		····			
Income	37	Census Year national MHI. See instructions.				37	\$53,046
		Source: Census 2008-2012 American Community Survey					
	38	MHI adjustment factor. Copy from line 19.				38	1.0363
	39	Adjusted national MHI. Multiply line 37 by line 38.				39	\$54,973
	40	MHI Benchmark. See instructions.				40	Weak
Financial	41	Full market value of real property. Copy from line 29.				41	\$141,660,440
Management	42	Property tax revenues. See instructions.				42	\$1,136,286
Indicators	43	Property tax revenues as a percent of full MPV. Divide line 42 by line 41	l, then i	nultiply by	100.	43	0.80
	44	Property Tax Benchmark. See instructions.				44	Strong
Property Tax	45	Property Taxes Levied. See instructions.				45	\$1,455,050
and Collection	46	Property Tax Revenue Collection Rate. Divide line 42 by line 45, then m	nultiply l	bv 100.		46	78.09
Rate	47	Collection Rate Benchmark. See instructions.				47	Weak
Matrix Score	48	Enter benchmark and corresponding score	В	lenchmark	Score		
	ŧ	Bond Rating. From line 25.	48a	T		i	
	ł	Net Debt. From line 31.	48b	Strong	3		
	C	Unemployment Rate. From line 35.	48c	Weak	1		
	C	Median Household Income. From line 40.	48d	Weak	1		
	e	Property Tax. From line 44.	48e	Strong	3		
	f	Collection Rate. From line 47.	48f	Weak	1		
	g	Sum. Sum up scores.	48g		9		
	49	Permittee indicators score. Divide line 48g by number of scores.				49	1.80
	50	Permittee Financial Capability Indicators Benchmark. See instruction	ns.			50	Mid-Range
	51	Residential indicator benchmark. Copy from line 22.				51	High
	52	Financial Capability (High Burden, Medium Burden, or Low Burden)). See i	instructions.		52	HIGH

APPENDIX D

BOROUGH OF DRAVOSBURG COMBINED SEWER SYSTEM LONG TERM CONTROL PLAN

(

(

MUNICIPAL AUTHORITY OF THE CITY OF MCKEESPORT BOROUGH OF DRAVOSBURG

 $\left(\right)$

Combined Sewer System Long Term Control Plan August 2014

KLH

and the second sec

ENGINEERS, INC 5173 CAMPBELLS RUN ROAD PITTSBURGH, PA 15205-9733

MUNICIPAL AUTHORITY OF THE CITY OF MCKEESPORT BOROUGH OF DRAVOSBURG

COMBINED SEWER SYSTEM LONG TERM CONTROL PLAN

TABLE OF CONTENTS

1.0	Executive Summary1				
2.0	Intro	duction	3		
	2.1	Background	3		
	2.2	Document Intention	4		
3.0	Syste	m Characterization	5		
	3.1	Service Area	5		
	3.2	Diversion Chambers	5		
	3.3	Pump Stations	6		
	3.4	CSS Upgrades Required	7		
4.0	Flow	Monitoring Study	8		
	4.1	Site Selection	8		
	4.2	Equipment Description	8		
	4.3	Field Quality Control	9		
	4.4	Office Quality Assurance	9		
	4.5	Rain Event Summary	9		
5.0	Comb	pined Sewer System Modeling	11		
	5.1	Methodology	11		
	5.2	Model Development	16		
	5.3	Validation	16		
	5.4	Historical Rainfall Analysis	22		
	5.5	Long-Term Continuous Simulation Results	23		
6.0	Existi	ng Facility	24		
	6.1	Existing NPDES Permit Requirements	24		
	6.2	Existing Hydraulic Loadings	24		
	6.3	Existing Mass Loadings	25		
	6.4	Existing Process	26		
7.0	Treatr	nent Plant Upgrades	29		
	7.1	Design Hydraulic Loadings	29		
	7.2	Design Mass Loadings	31		
	7.3	Design Effluent Limits	32		
	7.4	Alternatives Evaluation	32		
8.0	Projec	t Planning	40		
9.0	Summ	ary and Conclusions	41		

(

TABLES

Table 3.1	Dravosburg Sewersheds	
Table 3.2	Dravosburg CSO's	5
Table 3.3	Dravosburg Conveyance System	6
Table 4.1	Dravosburg Flow Monitoring Sites	8
Table 4.2	Significant Rain Events	
Table 5.1	Ranges of Values for Unit Hydrograph Parameters	
Table 5.2	Number of Kept, Outlier, and Total Events by Site	20
Table 6.1	Existing Effluent Limits	24
Table 6.2	Existing Hydraulic Loadings	25
Table 6.3	Existing Influent Organic Loadings	25
Table 7.1	Design Hydraulic Loadings	
Table 7.2	Design Mass Loadings	
Table 7.3	Design Effluent Limits	
Table 7.4	Alternatives Comparison	
Table 7.5	WWTP Upgrade Costs	
Table 8.1	LTCP Schedule	40

PHOTOGRAPHS

Photograph 6.1	Comminutor/Bypass Channel	
Photograph 6.2	Raw Sewage Pumps	
Photograph 6.3	Final Clarifiers	
Photograph 6.4	Chlorine Contact Tank	
Photograph 7.1	SBR	

FIGURES

(

Figure 5.1	Hydrograph Decomposition of Total Monitored Flow	12
Figure 5.2	Typical Dry Weather Flow Pattern	12
Figure 5.3	Summation of Three Unit Hydrographs	13
Figure 5.4	Interceptor Profile Between Manhole DV352 and Outfall WWTP-OF	15
Figure 5.5	Event Volume Regression Plot for All Sites in the Dravosburg System	21
Figure 5.6	Event Peak Regression Plot for All Sites in the Dravosburg System	22
Figure 7.1	Design Hydrograph	30
Figure 7.2	Conventional SBR	
Figure 7.3	Continuous Flow SBR	36

-

APPENDICES

- Appendix A System Map, CSO Location Map & Tributary Area Map
- Appendix B Dravosburg Survey Field Book
- Appendix C Drnach Meter Site Inspection Forms
- Appendix D Drnach Scattergraphs
- Appendix E Dravosburg Model System Map
- Appendix F Dravosburg Model Physical Characteristics (List)
- Appendix G Monitored vs. Modeled Hydrographs
- Appendix H Monitored vs. Modeled Regression Plots
- Appendix I Typical Year Rain Hyetograph
- Appendix J InfoSWMM Typical Year Model Report
- Appendix K Existing Process Flow Diagram
- Appendix L Existing Site Plan
- Appendix M Existing Process Calculations
- Appendix N Alternative 1: Process Flow Diagram
- Appendix O Alternative 1: Site Plan
- Appendix P Alternative 1: Process Calculations
- Appendix Q Alternative 2: Process Flow Diagram
- Appendix R Alternative 2: Site Plan
- Appendix S Alternative 2: Force Main Alignment
- Appendix T Project Cost Estimates

KLH

ABBREVIATIONS

(

AAF	Annual Average Flow
BNR	Biological Nutrient Removal
BOD	Biological Oxygen Demand
CSO	Combined Sewer Overflow
CSS	Combined Sewer System
DEP	Pennsylvania Department of Environmental Protection
EDU	Equivalent Dwelling Unit
EPA	United States Environmental Protection Agency
FEMA	Federal Emergency Management Agency
GPD	Gallons Per Day
GPM	Gallons Per Minute
LF	Linear Feet
LTCP	Long-Term Control Plan
lb/day	Pounds Per Day
mg/L	Milligrams Per Liter
MGD	Million Gallons Per Day
/100ml	Colony Forming Units Per 100 Milliliter
MMF	Maximum Monthly Average Flow
NH3-N	Ammonia Nitrogen
NO ₂	Nitrite
NO3	Nitrate
NPDES	National Polluant Discharge Elimination System
PDF	Peak Daily Flow
PIF	Peak Instantaneous Flow
PHF	Peak Hourly Flow
PLC	Programmable Logic Controller
POTW	Publicly Owned Treatment Works
SBR	Sequencing Batch Reactor
SCS	United States Natural Resources Conservation Service
SOR	Surface Overflow Rate
SWMM	Storm Water Management Model
TF	Trickling Filter
TKN	Total Kjeldahl Nitrogen
TMDL	Total Maximum Daily Load
TN	Total Nitrogen
TP	Total Phosphorus
TSS	Total Suspended Solids
UV	Ultraviolet
VFD	Variable Frequency Drive
WWTP	Wastewater Treatment Plant

(

lv

,

ENGINEERS, INC

1.0 EXECUTIVE SUMMARY

The Long-Term Control Plan (LTCP) was completed in order to address wastewater treatment plant (WWTP) and combined sewer system (CSS) upgrades necessary to meet Federal and State regulatory requirements. The goal of the LTCP is to decrease volume of combined sewage overflows on an annual basis and subsequently, increase the volume that receives treatment at the WWTP.

The focus of this LTCP update is to:

- 1. Develop WWTP design loadings required in order to address combined sewer overflow (CSO) regulatory requirements.
- 2. Evaluate the capacity of the existing Borough of Dravosburg WWTP processes relative to design loadings.
- 3. Complete evaluation of feasible alternatives developed to address WWTP process deficiencies relative to design loadings.

It was determined that no CSS upgrades are required to convey the 10-year, 24-hour design storm flow while maintaining greater than 85% capture of all combined flow during a typical year, given a free discharge at the WWTP pump station. Detailed evaluation was completed for two (2) alternatives.

- Alternative 1 Modify existing WWTP to Sequencing Batch Reactor (SBR).
- Alternative 2 Pump Station to MACM WWTP + existing tanks as flow storage.

Detailed evaluation of the proposed alternatives led to the recommendation of Alternative 2 for Borough's LTCP upgrades. The total estimated project cost is \$5,503,000. This alternative is recommended for the following reasons:

- Alternative 1 project cost is \$3,371,000 more than the recommended Alternative 2.
- Alternative 2 eliminates operation and maintenance requirements of a WWTP.

KLFENGINEERS, INC.

The following LTCP schedule is proposed.

Milestone	Date
Submit draft LTCP	September 1, 2014
Submit final LTCP with MACM ACT 537	November 1, 2015
DEP approval of LTCP and ACT 537	January 1, 2016
Obtain funding for design related services	January 1, 2017
Begin design of upgrades	January 1, 2017
Apply for MACM WWTP re-rate	July 1, 2017
Apply for Part II Permit for pump station	July 1, 2018
Receive Part II Permit for pump station	January 1, 2019
Obtain funding for construction	January 1, 2021
Begin construction for CSS upgrades	March 1, 2021
Complete construction	March 1, 2023
Submit post construction compliance monitoring plan	September 1, 2023

*DEP LTCP approval and Part II Permit dates are beyond the control of the Borough and KLH, therefore schedule dates will be adjusted based on actual DEP milestone completion dates.

2.0 INTRODUCTION

2.1 BACKGROUND

The Borough of Dravosburg is located in Allegheny County, Pennsylvania; it is situated along the Monongahela River. The population was 1,792 at the 2010 Census. For all intents and purposes, 100% of the Borough is provided sewer service and the service area does not go beyond the corporate limits. The Borough's combined sewer system (CSS) presently serves 609 customers. Utilizing the U.S. Census data for 2010, which indicates an average of 2.01 persons per household, it is estimated that the WWTP serves approximately 1,224 persons. The WWTP is located in the eastern area of Dravosburg and discharges directly into the Monongahela River. The plant is owned by the Municipal Authority of the City of McKeesport and operated under NPDES Permit No. PA0028401.

The Borough has selected to utilize the EPA CSO Control Policy "presumption" approach criteria ii through their Long Term Control Plan (LTCP) process. The criteria are as follows:

"The elimination or capture for treatment of no less than 85% by volume of combined sewage collected in the CSS during precipitation events on a system-wide annual average basis."

In order to assess the overflow volumes relative to total CSS conveyance on an annual average basis, the Borough completed a system characterization survey, a comprehensive flow monitoring study (from January 1, 2013 through July 1, 2013), and computer modeling, utilizing SWMM, of CSS hydraulic and hydrologic characteristics. The results of the flow monitoring and modeling study are described through this report.

This report will summarize sewer system upgrades/modifications required in order to allow for the "presumption" approach criteria to be met.

The monitoring and modeling established peak flow instantaneous flow as 3.812 MGD, based on 10-year, 24-hour rain event with no manhole overflows. This peak flow value is far in excess of the existing WWTP's peak capacity, but the system was capable of conveying the flow to the WWTP. Therefore, no sewer system upgrades or modifications will be necessary to meet the EPA CSO Control Policy.

The focus of this Long-Term Control Plan is to:

- 1. Develop WWTP design loadings required in order to address combined sewer overflow (CSO) regulatory requirements.
- 2. Evaluate the capacity of the existing Borough of Dravosburg WWTP processes relative to design loadings.

ENGINEERS, INC

3. Complete evaluation of feasible alternatives developed to address WWTP process deficiencies relative to design loadings.

2.2 DOCUMENT INTENTION

(

This document is intended for planning purposes only. Evaluation of specific processes is limited to confirming feasibility and estimating planning level project costs. Once this LTCP update report is approved, the basis of design study can commence. This study will focus on the process modeling, detailed equipment evaluation, and development of process control logic for the recommended alternative. The Basis of Design Report will serve as the basis for all design phase work.

3.0 SYSTEM CHARACTERIZATION

3.1 SERVICE AREA

(

The Borough of Dravosburg presently serves 609 customers. The system includes 8.5 miles of interceptor and collector sewers, two (2) pump stations, and one (1) diversion chamber, and two (2) CSO outfalls. The only un-sewered service areas are in the northern section of Pittsburgh-McKeesport Boulevard from Sixth Street to Bettis Road, Luscombe Lane, and the homes around Sandy Lake. The Borough's collection system is split into the following sewersheds:

Table 3.1				
Sewershed	Flow Type	Location from WWTP		
Dravosburg	Combined	North		
Bettis Road	Sanitary	North-Eastern		
Richland Ave	Sanitary	North-Western		
Scott Drive	Sanitary	Western		
Clay Street	Sanitary	Eastern		

Dravosburg Sewersheds

3.2 **DIVERSION CHAMBERS**

The CSS includes two (2) CSO outfalls. The CSO identification numbers and locations are listed in Table 3.2 below. The locations of these CSO's are shown on the drawing set included in Appendix A.

	Dravosburg CS	SO's
	Table 3.2	
o .	Location	Commente

CSO ID No. Location		Comments
001	WWTP	WWTP Outfall
002	Along SR 837 at WWTP	Diversion Chamber to WWTP Outfall

3.3 PUMP STATIONS

The Dravosburg sewage collection system and WWTP has two (2) pump stations. The first is the Bettis Road Pump Station which collects sanitary only flow from the north-central portion of the Borough. The pump station houses two (2) identical pumps rated for 0.252 MGD (175 GPM) at 75-feet total dynamic head (TDH).

There is a second pump station located at the headworks of the plant. The influent station pumps flow from the wet well to the grit chamber influent channel. The pump station has three (3) dry-pit submersible pumps. Two (2) of the pumps are identical, rated at 0.576 MGD (400 GPM) at 31-feet TDH. The third pump is rated for 0.72 MGD (500 GPM) at 33-feet TDH.

During wet weather flow, the two (2) smaller pumps produce the same flow rate as the single larger pump. The WWTP is rated for an average flow rate of 0.48 MGD, and wet weather flow equal to 1.5 times average, or 0.72 MGD.

3.3.1 Interceptor Sewer

The Dravosburg conveyance system consists of the following.

Pipe Diameter [inches]	Length [feet]
8	24,577
10	7,957
12	7,396
15	320
18	2,376
20	360
24	1,440
60	428
72	2,227
Brick Eggshape	613
6-inch Forcemain	1,100
Total [feet]	48,794
Total [miles]	9.24

Dravosburg Conveyance System Table 3.3

A copy of the Dravosburg field survey data is included in Appendix B.

KLF -1 ENGINEERS INC

3.4 CSS UPGRADES REQUIRED

 $\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$

Flow monitoring and SWMM modeling was completed for the Borough's CSS. It was determined that no upgrades are required within the system to allow for conveyance of the peak core flow, 85% capture, and no manhole overflows given 10-year, 24-hour rain event and a free discharge at the WWTP pump station.

(

4.0 FLOW MONITORING STUDY

4.1 SITE SELECTION

Flow monitoring site locations were selected based on their importance in the collection system. Meters were installed and maintained by Drnach Environmental, Inc. (DE). Monitoring sites were selected to ensure all areas of the system were accounted for. In total, five (5) meters were required to account for all flow. These areas are as follows:

- Scott Drive Area (West)
- Clay Street Area(East)
- Bettis Road Area (North East)
- Richland Avenue Area (North West)
- Total North Area

The total north area meter accounted for the Bettis Road area, Richland Avenue area, and the remaining portion in the center of Dravosburg. By subtracting the Bettis and Richland flows from the total meter, the inflow from the center portion of Dravosburg was determined. DE site inspection forms are included in Appendix C. Table 4.1 shows the flow monitoring sites and monitoring period.

Sites	Location	Monitoring Period	Comments
M-3	Front of WWTP	January 1 – June 1, 2013	Total North Area
M-4A	Behind 181 Duquesne Ave	January 1 – June 1, 2013	Bettis Road Area
M-5	110 Maple Ave	January 1 – June 1, 2013	Richland Avenue Area
M-6A	Washington Ave SW of WWTP	January 1 – June 1, 2013	Scott Drive Area
M-7A	Gravel road adjacent WWTP	January 1 – June 1, 2013	Clay Street Area

Dravosburg Flow Monitoring Sites Table 4.1

A map illustrating the metered areas of Dravosburg is included in Appendix A.

4.2 EQUIPMENT DESCRIPTION

The meters installed, by DE, for the flow monitoring study were area-velocity (A-V) meters. The A-V meters are capable of measuring head and flow velocity over the full range of sewer flow, from free-flow to surcharged as well as reverse flow.

Rain gauges utilized were tipping-bucket type.

4.3 FIELD QUALITY CONTROL

The A-V meters were installed, maintained, and downloaded by DE. Each site was visited on a weekly basis in order to ensure that the equipment was functioning properly. This approach allowed for issues to be corrected without significant loss of data and time.

4.4 OFFICE QUALITY ASSURANCE

Flow data provided to Dravosburg was reviewed by KLH Engineers, Inc. (KLH) in order to ensure that the data was reliable. Reliability of flow data was evaluated in terms of precision and accuracy.

Precision, repeatability of measurements, is best evaluated through use of scattergraphs. KLH reviewed scattergraphs provided by DE in order to confirm that the data being provided had a reasonable level of precision. Drnach scattergraphs and hydrographs for the meter sites are included in Appendix D.

Accuracy, how well meter values compare to actual values, was also evaluated. This evaluation is more difficult given that the actual flow or velocities at any given time are difficult to know for certain. However, accuracy was evaluated from a magnitude standpoint. Comparisons of total daily flows from the meter sites to the WWTP were made as well as individual site evaluations with respect to hydraulic evaluation tools such as Manning's Equation.

The data from all sites was determined by KLH to have reasonable levels of precision and accuracy and therefore the data was considered to be reliable for the purposes of this study.

4.5 RAIN EVENT SUMMARY

The major rainfall monitoring began on January 1, 2013 and ended on June 1, 2013. During this time period three (3) significant rain events occurred. These events are listed in Table 4.2 below. A significant rain event was defined as an event where rainfall depth was greater than or equal to one inch.

Event No.	Start Date	End Date	Duration [hrs]	Depth [in]
1	1/30/2013	1/31/2013	22.25	1.08
2	2/26/2013	2/27/2013	24.75	1.01
3	4/16/2013	4/17/2013	8.75	1.13

Significant Rain Events

Table 4.2

KLFENCONEERS INC.

During this time period, the total rainfall depth was 13.08 inches. Annual average rainfall for the National Oceanic and Atmospheric Administration (NOAA) McKeesport, PA site (nearest rain gage site to Dravosburg) is 37.05 inches. The rainfall recorded during the monitoring period is a slightly less than the annual average rain event.

(13.08 inches) x (12 months/year) + (5 months) = 31.39 inches/year

(

KLIENGINEERS, INC.

5.0 COMBINED SEWER SYSTEM MODELING

5.1 <u>METHODOLOGY</u>

The Dravosburg CSS was modeled utilizing Innovyze InfoSWMM (SWMM). SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of sub-catchment areas that receive precipitation and generate runoff and pollutant loads. The routing portion of SWMM transports this runoff through a system of pipes, channels, storage/treatment devices, pumps, and regulators.

5.1.1 Model Hydrology

There are three (3) major components of the total sewer flow in combined sewer system. Dry weather flow (DWF) includes two components (groundwater infiltration and base wastewater flow). The third component is runoff. Groundwater infiltration (GWI) represents groundwater that enters the collection system through defective pipes, pipe joints, and leaking manhole walls during dry weather. Base wastewater flow (BWWF) is the residential, industrial and commercial flow discharged to the sewer system for collection and treatment. GWI and BWWF together comprise the base flow, or dry weather portion of sewer flow. Runoff represents the wet-weather contribution that enters a combined sewer system during and after a rainfall event.

Accurate dry weather flow plays an important role in hydrologic and hydraulic (H&H) modeling. Dry weather flow loadings were determined through analysis of flow monitoring data during dry weather days from each flow monitoring location as well as the total system flow monitored at the WWTP. Hydrograph decomposition is the process of analyzing a total monitored sewer flow hydrograph and estimating the three components of wastewater flow (Runoff, BWWF and GWI). Hydrograph decomposition was performed using EPA Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox. Although SSOAP Toolbox is mainly used in sanitary sewer overflow analysis, its capability of hydrograph decomposition can also be utilized in combined sewer overflow analysis. Figure 5.1 illustrates the hydrograph decomposition of monitored wastewater flow. The average base flow (BWWF and GWI) time series is projected through the monitored wet weather hydrograph. The area between the wetweather hydrograph and the average base flow time series represents the Runoff volume.

KLF-1 ENCINEERS, INC.

11

Generally, the dry weather flow varies with time in a day, with two peaks at about 7:00AM and 7:00PM, two bottoms at about 3:00AM and 3:00PM. The dry weather flows were loaded in corresponding upstream manholes. Figure 5.2 shows the typical dry weather flow pattern.

Typical Dry Weather Flow Pattern

Municipal Authority of the City of McKeesport Borough of Dravosburg Long Term Control Plan Ref. No.: 220-53 August 2014

KLF ENGINEERS, INC Wet weather flows were simulated using InfoSWMM by utilizing the RTK unit hydrograph method. Figure 5.3 illustrates how SWMM generates three unit hydrographs based on the RTK parameters for a given unit rainfall input. It also demonstrates that the total RDII unit hydrograph is the summation of three individual unit hydrographs. The three unit hydrographs can be related with fast (first unit hydrograph), medium (second unit hydrograph), and slow (third unit hydrograph) RDII responses typically observed in the sanitary sewer system. In some cases, only one or two unit hydrographs are required to adequately define observed RDII hydrographs.

Summation of Three Unit Hydrographs Figure 5.3 FIRST UNIT TOTAL RDII HYDROGRAPH HYDROGRAPH OF R₁, T₁, AND K₁ **RESULTING FROM** RAINFALL, P RDN SECOND UNIT HYDROGRAPH OF R₂, T₂, AND K₂ THIRD UNIT HYDROGRAPH OF R₃, I₃, AND K₃ 0 TIME T_1 T2+K2*T2 T_2 T1+K1*T1

The following general guidelines should be followed in selecting the RTK parameters to ensure that the calculated RDII hydrograph meets the goal of visual curve fittings:

Total R value = $R_1 + R_2 + R_3$, if all three unit hydrographs used.

Тз

- > The T and K parameters should be similar for rainfall events for a given sewershed tributary to the flow monitor since they depend on the geometry and sewer system layout.
- > In all cases, $T_1 < T_2 < T_3$.
- > In most cases, $K_1 < K_2 < K_3$.
- > The necessity to change T and K significantly for a particular event to match the observed flows is often a sign that the rainfall data being used is not representative of the rainfall that fell over the basin for the event or the system experienced operational challenges resulting in an altered shape of the hydrograph.

T3+K3*T3

- > The event specific R-values will vary, generally being higher for wet antecedent moisture conditions and lower for dryer antecedent conditions. Similarly, R-values will typically be higher in a wet season.
- > T and K for the three triangular unit hydrograph should generally be within the ranges shown in Table 5.1.

Table 5.1				
Curve	T (Hours)	K		
1	0.5 – 2	1-2		
2	3-5	2-3		
3	5-10	3-7		

Ranges of Values for Unit Hydrograph Parameters

5.1.2 Model Hydraulics

Flows in the collection system, which include dry-weather flows and the wet-weather flows, are routed through the hydraulic configuration of the model. The hydraulic configuration of a model is the representation of the various hydraulic elements of the system, which can broadly be classified as nodes and links. Nodes in the model are the manholes, diversion chambers, wet well, and outfalls, while the links are the conduits, orifices, diversion weirs, and pumps connecting the nodes.

The purpose of a diversion chamber is to intercept and convey all of the dry-weather flow, and a regulated fraction of wet-weather flow, to the wastewater treatment plant. The diverted dryand wet-weather flow is conveyed by a connector pipe to the interceptor, while wet-weather flows in excess of the design capacity of the regulator are diverted through a diversion weir or overflow pipe to a receiving stream. Wet wells are drainage system nodes that provide storage volume. Physically they could represent storage facilities as small as a catch-basin or as large as a lake. The volumetric properties of a storage unit are described by a function or table of surface area versus height. Outfalls are terminal nodes of the drainage system used to define final downstream boundaries under Dynamic Wave flow routing or discharge overflow to the receiving stream.

An orifice diversion structure is a modification of the dam structure consisting of a fixed plate or gate. At the entrance to the connector pipe, the gate or plate is designed to place additional hydraulic restrictions beyond that of the connector pipe on flow diverted to the interceptor. Usually the incoming municipal pipe and the overflow pipe are the same size while the connector pipe to the interceptor is smaller. As higher flows increase the hydraulic grade line (HGL) or water level in the structure, wet-weather overflow in excess of the engineered conveyance capacity of the regulator device and connector pipe is diverted through an outfall pipe to a receiving stream. Pumps are links used to lift water to higher elevations. A pump curve describes the relation between a pump's flow rate and conditions at its inlet and outlet nodes. The Dravosburg interceptor system consists of north, west, and east sections with the treatment plant in the south. Example profiles of the interceptor are shown in Figure 5.4.

Interceptor Profile Between Manhole DV352 and Outfall WWTP-OF Figure 5.4

Hydraulic routing of dry and wet weather flows was accomplished utilizing dynamic wave. Dynamic wave is the full solution of the Saint-Venant Equations, which describe onedimensional unsteady flow through conservation of mass and momentum. The dynamic wave method is capable of estimating hydraulic parameters for free-flow, open channel with backwater effects, surcharged, full pipe, and reverse flow conditions. Although analysis utilizing this method is complex and time consuming, it is well suited to CSS which are subject to a variety of hydraulic conditions.

5.2 MODEL DEVELOPMENT

The major characteristics of interceptors in the model, which include conduit length, size, manhole invert, manhole depth, were developed using KLH survey data. Unlike sub-catchment hydrological parameters, the major characteristics of interceptors were deemed fixed and were not adjusted during model validation process, unless reliable investigation showed that there was an update for the manhole or conduit.

Additionally, field data collected by DE were used. Data collected by DE are manhole inspection with site photographs, precipitation data, and flow monitoring data.

Totally, the model contains 5 sub-catchments, 29 manhole structures, 30 conduits, one (1) outfall structure, one (1) orifice, three (3) storage structure. Appendix E shows a system map of the Dravosburg model. Appendix F shows the model components details in text format.

5.3 VALIDATION

Model validation is the process of adjusting both hydrologic (flow development) and hydraulic (flow routing) variables to best match actual measured flow data. The result is a hydrologic and hydraulic model of an existing collection system that best represents dry weather conditions and the flow responses to wet weather conditions and hydraulic grade lines (HGL) within the sewer system. A properly validated hydrologic and hydraulic model provides a valuable tool for many types of analyses including simple capacity analyses and CSO alternatives evaluation.

The Dravosburg model will be used as a predictive tool to characterize the sewage collection system under existing and future conditions. Therefore, it is imperative that the model accurately represents wastewater flows in the collection systems. To calibrate the Dravosburg model, extensive basin-wide flow monitoring was conducted to collect the required data. This data, once subjected to quality assurance procedures, was compared to the modeled response at the monitored locations. The model input parameters were then subject to validation to facilitate a closer correlation between the observed data and the simulated response.

5.3.1 Validation Criteria

The accuracy of the developed model during wet-weather events is essential when recommending appropriate wet-weather control facilities. To make sure that the model accurately represents the best available information, rigorous wet-weather validation criteria were applied to the Dravosburg model using a large quantity of quality-assured monitoring data.

Hydrologic validation was conducted for all of the monitored sites to properly simulate the wet-weather response from the monitored sewershed. Hydrologic validation of a monitored sewershed was based on the maximum number of successfully monitored wet-weather events.

KLFENGINEERS INC

The number of events used for validation depends on the monitoring period and flow monitoring quality.

Using time series plots, graphical comparisons were made of peak flow and volume for each wet-weather event occurring during the validation period. Statistical comparison plots were developed to illustrate the goodness-of-fit between the modeled response and the monitored data. For a large number of storm events monitored locations, the simulated storm volumes and peak flows vs. the corresponding monitored volumes and peak flows were plotted. Regression plots were also generated to make statistical comparisons of the simulated flows and the monitored flows. The statistics include a regression trendline of model results compared to the metering results, a calculation of the slope and intercept of the trendline. An R-square value calculation is performed to provide a measure of the models accuracy to predict flow monitoring results. Storm events with missing, incomplete and/or errant flow monitoring data, unreasonable responses in either the simulated flows or monitored flows or inaccurate or unreasonable precipitation data were identified and deemed "outliers." These outlier storm events were deleted for the regression analysis, so they did not affect the results of the regression analysis. The iterative process of optimizing the runoff and RDII parameters was continued until the validation objectives were achieved.

While using any monitored flow data to validate a hydraulic model, the variability of the monitored data needs to be considered. This is to say that even under optimal conditions within a monitoring manhole, the accuracy of monitored data is typically +/-10 percent, and the variability can be higher in a hydraulically challenged site such as high velocities, surface turbulence and varying backwater interferences. Depending on the hydraulic conditions present at a monitoring site, there can be ample variation in the performance of a monitoring site in terms of flow monitoring data collected during dry- and wet-weather flow from that site. This variability was accounted for when using the observed flow monitoring data during the hydrologic validation of the sites.

The purpose of the validation process for monitored combined sewersheds is to determine the runoff parameters to achieve the following primary goals of model validation:

- On the statistical regression plots, a regression line with slope close to one (1) indicates that the modeled storm event volumes and peak flow rates are consistent with the monitored volumes and peak flow rates.
- On the statistical regression plots, an intercept of the regression line close to zero (0) indicates that the modeled event volumes and peak flow rates were not biased (i.e., consistently over-simulating or under-simulating) with respect to the monitored volumes and peak flow rates.
- On the statistical regression plots, an R-square value of the regression line close to one (1) indicates that the degree of scatter in the data points in the regression plot is low.

• On the time series plots, matching as closely as possible the ratio of the time to peak, shape and magnitude for the monitored and simulated events.

For small number of storm events monitored locations, the statistical method may not generate stable regression plots. In these cases, model validation was evaluated for individual storms and overall storms. The validation criteria are the percentage of model peak higher than meter peak (P_{per}) and the percentage of model volume higher than meter volume (V_{per}). These criteria where used in conjunction when determining whether or not a particular portion of the system was adequately validated. The iterative process of optimizing the runoff parameters was continued until the validation objectives were achieved. The definition of P_{per} and V_{per} were shown in Equation 2 and Equation 3.

$$P_{per} = \frac{P_o - P_m}{P_o} \times 100\%$$

Equation 2

 $V_{per} = \frac{V_o - V_m}{V_o} \times 100\%$

Equation 3

Where:

(

(

 P_0 = Observed (meter) hydrograph peak;

Pm = Modeled hydrograph peak;

Vo = Observed (meter) hydrograph total volume;

V_m = Modeled hydrograph total volume;

The purpose of the validation process for monitored combined and separate sub-catchments is to determine the runoff parameters to achieve the primary goals of model validation. Generally speaking, peaks and volumes within 15 percent are considered to be well validated.

It is important to emphasize that with the large number of storms used to validate the model, data scatter is expected and acceptable in the regression plots, especially for simulated vs. monitored storm peak flow rates. Because of the large number of storm events considered in the analyses, a higher degree of scatter in the data points (with a corresponding lower R-square value) needs to be allowed, as long as there is no overall bias demonstrated in these plots. With the long-term continuous simulation modeling approach, simulation of individual storms is not significant when compared with the accuracy of the overall model simulation over the course of the total model duration. The criterion is to make sure that there is no overall bias in the simulations, and that over-simulation and under-simulation of individual storms balance out over the course of the long-term simulation.

ENGINEERS INC.

5.3.2 Model Validation QA/QC Procedures

QA/QC procedures were utilized during both the hydrologic and hydraulic validation processes to verify that the model yields meaningful, accurate, and reliable results consistent with the modeling goals and objectives. The following general QA/QC procedures were performed during the model validation processes:

- Checked for warnings and error messages in the model output file and resolved all major warnings and errors.
- Checked the model's run report for inconsistencies and/or unexpected results.
- Checked the model's overall continuity error and resolved items resulting in an overall continuity error greater than 2%.
- Checked individual continuity errors and resolved items resulting in individual continuity errors greater than 5%.
- Checked model stability using the following methods:
 - Visually checked the dynamic performance of the hydraulic grade line along profile views of sewers.
 - Visually checked the output hydrographs at key hydraulic locations across the simulated area.
 - Checked for dry pipes under both dry weather and wet weather flow conditions and resolved any improperly loaded conditions.
 - Checked the performance of system appurtenances such as pumps, weirs, orifices, and storage elements and verified that they are performing as expected.
 - Checked manholes where flows are lost from the system and verified that these losses are as expected.

5.3.3 Model Validation

For the validation process, all of the wet weather events where data were available were initially utilized at each monitoring location. During the QA/QC process, certain events were noted to have various data problems, including uncharacteristic responses, and these events were generally defined as outliers. Table 5.2 shows the kept events number, outlier events number and the total events number for each site.

19

		-	
	Kept	Outlier	Total
M-3	6	1	7
M-4A	7	0	7
M-5	7	0	7
M-6A	7	0	7
M-7A	6	1	7

Number of Kept, Outlier, and Total Events by Site Table 5.2

Figure 5.5 and Figure 5.6 present the overall validation results for all the monitoring sites in the Dravosburg system for event volume and event peak flow, respectively. The plots show all of the validation events and a trendline for the validation events. The data used to generate these figures is derived from the individual modeling and monitoring site.

Figure 5.5 shows the regression plot between the simulated event volume and monitored event volume for all the monitored sites in the Dravosburg system. As the plot shows, the slope of the regression line is 1.1563, which suggests that there is good correlation between the simulated and monitored event volumes. The small value of 0.0144 for the intercept suggests that there is no relative bias in the simulation of the event volumes. The R-squared value of the regression plots is 0.9242, suggesting that there is a very small scatter in the data points around the regression. The source of the scatter is attributed to non-uniform hydrologic responses in the collection system and inaccuracies in flow monitoring and rainfall data collection.

KLF-1

Event Volume Regression Plot for All Sites in the Dravosburg System Figure 5.5

Figure 5.6 shows the regression plot between the simulated event peak flow and monitored peak flow for all the monitored locations in the Dravosburg system. As the plot shows, the slope of the regression lines is 0.8658 which suggests that there is good correlation between the simulated and monitored event peak flows. The small value of 0.0836 for the intercept suggests that there is no relative bias in the simulation of the event peak flows. The R-squared value of the peak flow regression plot is 0.9238 suggesting that there is a small scatter in the data points. The source of the scatter is attributed to non-uniform hydrologic responses in the collection system and inaccuracies in flow monitoring and rainfall data collection.

Event Peak Regression Plot for All Sites in the Dravosburg System

To illustrate modeling details, Appendix G shows the modeled and monitored volumes and peaks for each site and each event, as well as the monitored and modeled hydrographs. Appendix H shows the regression plots for each site. Because some sites have a small number of monitoring events, the statistical method may not generate stable regression plots. This does not mean the validation is poor, as long as the total volume and peak differences are in reasonable range.

Overall, the model is considered to be well validated and suitable for evaluating the system performance in various rain events.

5.4 HISTORICAL RAINFALL ANALYSIS

As previously stated, the "presumption" approach evaluates overflows on an annual average basis.

"The elimination or capture for treatment of no less than 85% by volume of combined sewage collected in the CSS during precipitation events on a system-wide annual average basis."

The ALCOSAN typical year 15-minute interval rainfall data was used for this analysis. This data was used because it is readily available to KLH and it is representative of the annual average conditions for Dravosburg. This data is included in Appendix I.

5.5 LONG-TERM CONTINUOUS SIMULATION RESULTS

In order to determine whether or not the Dravosburg CSS can capture for treatment at least 85 percent of CSS rainfall dependent flow volume, on an annual average basis, a year-long continuous model simulation was completed using the increased ALCOSAN Pixel Eight typical year rainfall. All flow volume from the separate sewer system areas must be captured for treatment. Therefore, this volume is not part of Equation 4 below.

Equation 4 was utilized for percent capture evaluation.

% Capture = $[V_{WWTP} / (V_{WWTP} + V_{CSO})] \times 100\%$ Equation 4

Where

Vwwr- Total volume of CSS flow conveyed to the WWTP during wet weather, Vcso = Total volume of overflow from the CSO,

These volumes were determined based on the one year simulation.

Vwwff = 19.87 MG Vcso = 1.82 MG %Capture = [19.87 / (19.87 + 1.82)] x 100% = 91.6%

Based on the continuous simulation modeling, the Dravosburg CSS, on a system-wide annual average basis, will meet the "presumption" approach criteria ii, after completion of WWTP improvements described in the following sections. Maintaining a free discharge boundary condition at the WWTP influent pump station will allow for the "presumption" approach to be met. The SWMM model report is included in Appendix J.

6.0 EXISTING FACILITY

6.1 EXISTING NPDES PERMIT REQUIREMENTS

The existing WWTP provides screening, grit removal, conventional aeration, secondary treatment and disinfection prior to discharging treated effluent to Monongahela River. The operation and discharge is regulated under the terms of the current NPDES Permit Number PA0028401. The permit limits are listed in Table 6.1. The WWTP design flow is 0.48 MGD.

	LOADING (lbs)		CONCENTRATION (mg/L)			.)	
PARAMETER	Average Monthly	Average Weekly	Units	Average Monthly	Average Weekly	Instant. Maximum	Units
Flow	-	-	-	M	lonitor and R	eport	-
CBOD-5 Day	100	150	lb/day	25	37.5	50	mg/L
Suspended Solids	120	180	lb/day	30	45	60	mg/L
Total Residual Chlorine				1.0	· · · · · · · · · · · · · · · · · · ·	3.3	mg/L
Fecal Coliform							
May 1 to Sept 30			********	200			/ 100ml
Oct. 1 to April 30				2,000			/ 100ml
pH	Within Limits of 6.0 to 9.0 Standard Units At All Times.						

Existing Effluent Limits
Table 6 1

6.2 EXISTING HYDRAULIC LOADINGS

6.2.1 Average Flows

The facility has an average daily design capacity of 0.48 MGD. Analysis of flow data from the past five (5) years shows that monthly average flow has not exceeded 0.48 MGD for three (3) consecutive months, and therefore the WWTP is technically not hydraulically overloaded. However monthly average flows have exceeded 0.48 MGD five (5) times over the past five (5) years. The maximum monthly average flow observed over the past five (5) years is 0.820 MGD.

Analysis of flow data from the past five (5) years shows that the annual average flow for the WWTP is 0.274 MGD. Table 6.2 summarizes average flows for the five (5) years.

KLH

Aubic 0.2				
Year	Max. Mo. Ave. Flow (MGD)	Annual Ave. Flow (MGD)		
2009	0.237	0.192		
2010	0.820*	0.432		
2011	0.566	0.312		
2012	0.383	0.207		
2013	0.399	0.227		

Existing Hydraulic Loadings Table 6.2

*The Year 2010 Chapter 94 Report was provided with a disclaimer from Glenn Engineering & Associates, LTD stating that accuracy of data may have been compromised by the admitted falsifying of records by the former Sewage Plant Operator.

6.2.2 Peak Flows

The capacity of the raw sewage pump station limits peak flows that can be received by the WWTP. The peak pump capacity with the two (2) small pumps running is equivalent to the flow produced by the single larger pump. This limiting capacity is 0.72 MGD.

6.3 EXISTING MASS LOADINGS

6.3.1 Historical Loadings

WWTP raw sewage organic loading data was evaluated for the past five (5) years. Organic loadings are summarized in Table 6.3 below.

Table 6.3			
Year	Max. Month (lb. BOD/day)	Annual Ave. (lb. BOD/day)	
2009	229	162	
2010	1,149*	580	
2011	235	126	
2012	150	99	
2013	115	71	

Existing Influent Organic Loadings

*The Year 2010 Chapter 94 Report was provided with a disclaimer from Glenn Engineering & Associates, LTD stating that accuracy of data may have been compromised by the admitted falsifying of records by the former Sewage Plant Operator.

The WWTP's current rated organic capacity as reported in the Chapter 94 report is 2,780 lb/day. Given the 5-year annual average BOD loading of 208 lb/day and the 5-year annual average flow of 0.274 MGD, the average BOD concentration is 91 mg/L. The Borough's wastewater would be classified as low strength which is not uncommon for old CSS's.

6.4 EXISTING PROCESS

A process flow diagram for the existing WWTP is included in Appendix K of this report. A site plan for the existing WWTP is included in Appendix L. Calculations associated with the existing processes are included in Appendix M.

6.4.1 Preliminary Treatment

Preliminary treatment consists of a comminutor with a static bypass bar screen. These facilities were constructed in the Year 1965.

The design capacity of the comminutor channel is unknown however the WWTP's peak flows are limited to 0.72 MGD.

Comminutor/Bypass Channel Photograph 6.1

6.4.2 Raw Sewage Pumping

Flow comes into the existing wet well via the comminutor channel. Prior to entering the wet well, flow passes through a comminutor, with a static screen provided for bypass flow. The flow is then lifted up to the grit chamber by three (3) centrifugal pumps. Two (2) of the pumps operating simultaneously have the same pumping capacity as the third, larger pump. The raw sewage pumps have a peak pumping capacity of approximately 0.72 MGD. This capacity assumes that one pump is a backup and not operational. This pump station was constructed in the late 1950's, and the pumps were recently refurbished.

Raw Sewage Pumps Photograph 6.2

6.4.3 Grit Removal

Wastewater is pumped from the raw sewage pump station to an open channel flowing to the grit basin. The grit basin's peak capacity is 2.51 MGD based on a 3 minute minimum detention time. It is noted that the square configuration of this basin is not conducive to plug flow. Plug flow is desirable in aerated grit basin in order to reduce potential for basin short-circuiting.

6.4.4 Secondary Treatment

The grit basin effluent flows by gravity to two (2) aeration basins where biological treatment takes place. Each basin measures 90-feet long by 30-feet wide and have an average flow water surface depth of 15-feet.

Aeration basin effluent flows by gravity to two (2) rectangular final settling tanks. The settling tanks have a peak capacity of 0.680 MGD, based on total weir length and surface overflow rate.

6.4.5 Disinfection

Final settling tank effluent flows by gravity into two (2) chlorine contact tanks. Each tank is 23.5 feet long by 5 feet wide. Total calculated peak capacity is 0.396 MGD. These tanks were constructed in 1965.

6.4.6 Solids Handling

Sludge in each final tank settles to the end hopper, where it is then transferred to an intermediate sludge well via a telescoping valve. Scum removed from the surface of the final tanks is also conveyed to the sludge well. Return sludge is pumped from the sludge well back to the aeration basins by a set of two (2) Chicago Dry-Pit Solids Handling Pumps (Model LM4 HBB). The capacity of each of these pumps is 500 GPM at 33-feet of head.

The Authority has a third party company pump out the sludge well as necessary. The WWTP does not have an additional sludge holding facilities.

KLH___

7.0 TREATMENT PLANT UPGRADES

7.1 **DESIGN HYDRAULIC LOADINGS**

In order to meet the EPA CSO Control Policy, "presumption" approach as well as DEP design standards, three criteria were evaluated:

- 1. Percent capture - at least 85% of CSS volume (resulting from rain events), on an annual average basis, must be captured and conveyed to the WWTP for full biological treatment.
- 2. Peak core flow - Peak core flow = CSS peak dry weather flow x 3.5 + separate sewer system peak (given design rain event).
- 3. Design rain event - application of a design rain event is critical to ensure that upgrades completed to address percent capture and peak core flow will not result in manhole overflows.

The peak core flow for this system is 3.43 MGD. This peak flow includes 350% of the CSS dry weather flow and 100% of the separate sewer flow peak (given the design 10-year, 24-hour rain event). The peak core flow must receive full treatment; therefore, the design peak flow for the facility upgrades must be equal or greater than 3.43 MGD. KLH evaluated CSO regulator modifications required to ensure that both peak core flow and percent capture criteria are met. These modifications resulted in the 91.6% capture which was described in the Flow Monitoring and System Modeling section of this report. Application of the 10-year, 24-hour rain event, to the sewer system, including the modified CSO regulator, results in a modeled peak flow at the WWTP of 3.812 MGD. Since this peak flow is in excess of the peak core flow, it is an acceptable design peak. Design flows are summarized in Table 7.1 below.

Design Flow	WWTP (MGD)
Peak Instantaneous	3.812
Peak Hourly	2.924
Peak Daily	0.985
Max Monthly Ave	0.60
Annual Average	0.36

Design Hydraulic Loadings			
Table 7.1			
	WWTP		

All design flows were based on 30-year population projection. No significant growth is anticipated within the Borough over the next 30 years. Consistent with past Chapter 94 reports,

KLH

2 EDUs/year over the next 30 years was included. Development of each design flow is further described below.

7.1.1 Peak Instantaneous Flow (PIF)

As discussed above, PIF is governed by the design rain event. The design hydrograph resulting from the SWMM modeling is shown in Figure 7.1 below.

7.1.2 Peak Hourly Flow (PHF)

PHF was also estimated based on SWMM modeling.

7.1.3 Peak Daily Flow (PDF)

Application of design rain event to the SWMM model resulted in a PDF of 0.985 MGD. Recent Borough flow records indicate that PDFs of nearly 0.722 MGD have been observed, which is consistent with the maximum influent pumping capacity.

7.1.4 Maximum Monthly Average Flow (MMAF)

MMAF is a critical design parameter for evaluating WWTP treatment capacity. As discussed under Section 6.2.1 monthly average flows have exceeded the WWTP design average (0.48 MGD) 5 times over the past 10 years. Also the maximum monthly average flow observed over the past 10 years was 0.820 MGD, but the accuracy of this data is in question. Since the MACM took over the WWTP in the Year 2011, the reported maximum monthly average flow has been 0.566 MGD. The Monitoring and Modeling Sections established MMF as 0.60 MGD, which is

based on the maximum 3-month average flow in the past three (3) years, plus an additional factor of safety of 1.2, to account for reduction in CSO volumes.

Projected growth was also included in the design MMAF flow. No significant growth is projected for the Borough for the next 30 years.

Design average flow which corresponds to MMAF was established at 0.60 MGD for the purposes of this study in order to accommodate increase conveyance of CSS flow to the WWTP.

The increase in design average flow from 0.48 MGD to 0.60 MGD will require a hydraulic rerate.

7.1.5 Annual Average Flow (AAF)

AAF of 0.36 MGD was estimated based on the typical year rainfall distribution applied to the SWMM model.

7.2 DESIGN MASS LOADINGS

Design mass loadings were developed based on review of existing WWTP loading data with respect to industry standard typical values. It must be noted that by significantly increasing percent capture, there may be a significant increase in mass loadings. However, given the fact that the Borough's current loads are far below the WWTP's design capacity, it is reasonable to conclude that no organic re-rate will be necessary. Industry standard loadings for low to medium strength sewage and combined sewage were evaluated with respect to WWTP influent data available from the recent NPDES Permit Renewal.

Parameter	Design Concentration (mg/L)	Design Loading (lb/day)	
BOD	190	951	
TSS	210	1,051	
NH3-N	25	125	
TKN	40	200	
ТР	7	35	

Design	Mass	Loadings	
Table 7.2			

KLH

7.3 DESIGN EFFLUENT LIMITS

Tables 7.3 lists the design effluent limits. These limits apply only to construction of new treatment processes. These arte preliminary effluent limits provided by DEP.

14010 / 15							
	LOADING (lbs)		CONCENTRATION (mg/L))	
PARAMETER	Average Monthly	Average Weekly	Units	Average Monthly	Average Weekly	Instant. Maximum	Units
Flow	-	-	-	М	Monitor and Report		-
CBOD-5 Day	125	250	lb/day	25		50	mg/L
Suspended Solids	150	300	lb/day	30		60	mg/L
Total Residual Chlorine				0.5		1.6	mg/L
Ammonia Nitrogen							
May 1 to Sept 30				25			mg/L
Oct. 1 to April 30				M&R			mg/L
Fecal Coliform							
May 1 to Sept 30				200			/ 100ml
Oct. 1 to April 30				2,000			/ 100ml
pH Within Limits of 6.0 to 9.0 Standard Units At All Times.							

Design Effluent Limits Table 7.3

Note: Mass loadings are based on 0.60 MGD design flow.

7.4 ALTERNATIVES EVALUATION

7.4.1 Development of Alternatives

Alternatives were developed for evaluation with the primary focus of providing treatment to 85 percent of CSS flow captured during rain events on an annual average basis. In order to meet the 85 percent criteria, a hydraulic re-rate will be required. During the development of each alternative, it was high priority to maintain as much of the existing processes as possible. Three (3) alternatives were initially considered, but only two (2) were developed for detailed evaluation. The third alternative, to pump Dravosburg flow to the Duquesne WWTP, was discounted due to limited capacity at the Duquesne WWTP.

 <u>Alternative 1</u> – Convert existing process to a Sequencing Batch Reactor (SBR) process. Modification of existing process to handle all average and peak flow. This alternative includes construction of a new headworks and influent pump station, as well as modifications to the existing process using existing tanks. Additionally, this alternative includes upgrading the existing process to meet re-rate requirements. The following items are included in Alternative 1.

- New automatic bar screen and by-pass channel with static screen.
- New headworks building.
- New raw sewage pump station and controls.
- New raw sewage pump station piping and valve vault.
- New pump flow meter.
- Site gravity and force main piping.
- New grit removal system.
- Retrofit existing aeration basins to serve as SBRs.
- All SBR equipment and piping.
- Retrofit existing final clarifiers to serve as sludge holding tanks.
- Retrofit existing chlorine contact tanks to serve as UV disinfection.
- 2. <u>Alternative 2</u> Pump to McKeesport WWTP and convert existing WWTP to peak flow storage. This alternative includes construction of a new raw sewage pump station to convey all flow up to 1.0 MGD to the Municipal Authority of the City of McKeesport (MACM) WWTP. All flow above 1.0 MGD will be pumped by separate storm pumps and stored in the existing Dravosburg WWTP aeration basins. The following items are included in Alternative 2.
 - New automatic bar screen and by-pass channel with static screen.
 - New headworks building.
 - New raw sewage pump station and controls.
 - Average flow pumps and storm pumps.
 - New raw sewage pump station piping and valve vault.
 - New pump flow meter.
 - Site gravity and force main piping.
 - Force main piping to the MACM WWTP.
 - Retrofit existing aeration basins to serve as peak flow storage.
 - New diffusers in the peak flow storage basins.

7.4.2 Evaluation of Alternatives

The following sections summarize design considerations associated with each alternative. Both Alternatives 1 and 2 will meet the current permit requirements and will allow for treatment of design flows. Table 7.4 lists the advantages and disadvantages associated with each alternative.

Table 7.4 Alternative Alternative Advantages **Disadvantages** No. 1 SBR 1. Process is very flexible and easy to 1. Effluent quality depends on decanter operate. reliability. 2. Low manpower requirement. 2. Process control is dependent on PLC 3. Large biomass volume provides operation. process protection against shock mass loadings. 4. Produces a well stabilized sludge. 5. Lower sludge production. 6. Proven technology. 7. DEP is comfortable with SBR process. 2 **Pump Station** 1. Operation and maintenance of 1. Large pump station will require various To WWTP eliminated. sized pumps MACM WWTP 2. Lower manpower requirement.

Alternatives Comparison

Alternative 1 includes three (3) main components:

7.4.2.1 <u>Alternative 1 – Upgrade</u> Existing Process

- 1. Construction of a new raw sewage pump station.
- 2. Modification of the existing WWTP to a SBR plant capable of handling higher peak flows.
- 3. Modification of the existing chlorine contact tanks to serve as a UV disinfection facility.

A process flow diagram associated with Alternative 1 is included in Appendix N. A site plan associated with Alternative 1 is included in Appendix O. Calculations associated with Alternative 1 are included in Appendix P.

A mechanical bar screen, sized for 3.812 MGD, is recommended prior to the new raw sewage pump station. This screen will protect the grit basin, eliminate static screen cleaning requirement, and remove more fibrous materials from the flow stream than the existing static screens are capable of. While the existing comminutor provides pump protection by shredding fibrous solids, it does not remove these materials from the flow stream. The fibrous solids and other large inert solids that can be passed or shredded by the comminutor may still cause operation and maintenance issues in the downstream processes. Automatic bar screen clear openings of 1/4 inch are recommended. A by-pass channel with a static bar screen is recommended so that the automatic bar screen can be taken out of service for maintenance. This screen will be sized for at least 3.812 MGD.

The existing raw sewage pump station does not have adequate volume to handle the projected peak flows. As such, a new pump station is proposed. This station will be located adjacent to the existing final clarifiers and will require new gravity sewers to reroute influent flow. In

addition to the structure and pumps, new pump controls and associated electrical equipment will be included. Also a new pump discharge flow meter is recommended, located in an adjacent underground valve vault. This flow meter is used for DEP reporting, therefore accuracy is critical.

A new grit removal system is proposed at the head of the SBR tanks. This basin will be sized for a 0.6 MGD average and 3.812 MGD peak. Flow will be pumped from the new raw sewage pump station directly to the grit basin influent channel. The basin will consist of an above grade concrete tank. Grit pumps and grit dewatering equipment will be housed in a new building. Effluent from the grit basin will be conveyed by gravity to the proposed 2-basin SBR.

The conventional SBR treatment process typically involves a five-stage cycle that occurs in the reactor tank. The first stage is the fill stage when the wastewater influent fills the tank and mixes with mixed liquor settled during the fifth stage. Aeration characterizing the second or react stage can also occur during the initial stage. The react stage results in organic and nitrogenous oxidation. Aeration and mixing are terminated and the third or settle stage allows the settling of solids. The fourth or draw stage involves the decanting of effluent after settling. During the last stage the tank remains idle and solids are withdrawn from the bottom. Parallel reactor cycle times overlap such that the system is continuously accepting forward flow. Figure 7.2 shows conventional SBR operation.

Some SBR systems involve a semi-batch process where all stages occur in one tank as influent is continually accepted and baffled in an effort to reduce short-circuiting equalized flow and prevent disturbance of quiescent settling conditions. The five cycle stages of the true SBR cycle are combined into three in the semi-batch mode of operation. The first two stages of the true

Municipal Authority of the City of McKeesport Borough of Dravosburg Long Term Control Plan Ref. No.: 220-53 August 2014 KLH

batch process comprise the first stage of the semi-batch version. Sedimentation is considered the second stage of the semi-batch cycle, while the last is a combination of the decanting and idle stages of the true batch method. Figure 7.3 shows continuous flow SBR operation.

For either process system the cycle times can be adjusted to accommodate incorporating alternating phases of aerobic-anoxic/anaerobic (air on-air off) conditions in the cycles for BNR capabilities. Both systems provide a high degree of treatment by eliminating the negative impacts caused by extreme flow fluctuations and are considered viable options at the preliminary design stage.

Preference has been given to the continuous flow semi-batch style process. The manufacturer associated with the continuous flow style is ITT-ABJ. The reasons for the partiality include:

- Continuous flow type provides a more flexible adjustment to the sudden changes in flow. True batch characteristics are maintained for flows up to 3.5 times the design flow whereas continuous flow units allowing for "fill decant" mode during peak flow conditions over 3.5 times the design flow without disturbing the sludge blanket.
- As a result of the continuous acceptance of influent, the overall volume of the system is typically reduced by 20 to 30 percent of the true batch counterpart which needs the additional volume to equalize peak flows.
- The continuous flow system can be converted to a true batch system with the appropriate valving at low flows.

For these reasons the continuous flow system as manufactured by ITT-ABJ was the basis for the calculation of basin sizes and developing the cost estimates for Alternative 2. Photograph 7.1 is an example of an ITT-ABJ SBR basin. The photograph shows the floor mounted aeration diffusers and the decanter mechanisms.

SBR Photograph 7.1

Flow from the SBR will be discharge directly to the UV disinfection facility. The UV system must be sized for the peak decant rate, which is 4.4 MGD. The existing chlorine contact tank structures can be utilized for the UV channels. Use of these tanks will reduce required excavation and concrete costs, however maintenance of existing treatment processes will be challenging during construction. Further evaluation of this option should be completed during design.

The UV disinfection facility must be constructed at an elevation high enough to protect it from the 100-year flood. According to Federal Emergency Management Agency (FEMA), Flood Insurance Rate Map, the 100-year flood elevation for the WWTP site is 746. Water level in the UV channels will be controlled by appropriately sized weirs. The weir crest elevation should be at least 1.5 feet above the water surface elevation based on a 4.4 MGD peak decant flow through the outfall sewer given 100-year flood elevation tail water. A new outfall sewer will be required in order to accommodate the increased peak discharge.

Sludge from the SBRs will be wasted directly to the sludge holding tanks. The existing final will be converted into sludge holding tanks. The clarifier equipment will be removed. The existing tanks will provide approximately 58,000 gallons of capacity. Construction of digester tank(s) is not recommended. The Authority can continue to haul sludge to the MACM WWTP as required.

7.4.2.2 Alternative 2 - Pump Station to MACM WWTP

Alternative 2 includes the following main components:

- 1. Construction of a new raw sewage pump station, including normal flow and peak flow pump capacity.
- 2. Construction of new force main.
- 3. Modification of existing aeration basins to serve as peak flow storage basins.

A process flow diagram associated with Alternative 2 is included in Appendix Q. A site plan associated with Alternative 2 is included in Appendix R.

A mechanical bar screen, sized for 3.812 MGD, is recommended prior to the new raw sewage pump station. Automatic bar screen clear openings of 1/4 inch are recommended. A by-pass channel with a static bar screen is recommended so that the automatic bar screen can be taken out of service for maintenance. This screen will be sized for at least 3.812 MGD.

A submersible pump station is proposed for the new raw sewage pump station. This type of pump intake structure minimizes required footprint, as well as capital and operating cost. The pump station will be required to pump a total flow of at least 3.812 MGD. This will consist of normal flow pumps with a total pumping capacity of 1.0 MGD to the MACM WWTP, as well as peak flow pumps capable of conveying at least 4.24 MGD to the proposed peak flow storage basins. Four (4) to six (6) pumps will be required, two (2) to three (3) of each normal flow and peak flow pumps. Flow in excess of 1.0 MGD will cause rising water levels in the wet well and, in turn, activate the peak flow pumps.

In conjunction with the new pump station, a force main to the MACM WWTP will be required. The force main is estimated to be 8-inch diameter and will span 4,600 lineal feet. The force main will require a bore under the river to reach the MACM WWTP, estimated to be 800-feet in length. A copy of the proposed force main alignment can be found in Appendix S.

7.4.2.3 Cost Evaluation

Study level total project cost estimates were completed for the evaluated alternatives. The costs are as summarized in Table 7.5 below. Detailed cost estimates are included in Appendix T.

WWTP Upgrade Costs				
Table 7.5				
Alternative	Year 2014	Year 2014 Total		
	Construction Cost	Project Cost		
Alt 1 - WWTP Upgrades	\$7,099,000	\$8,874,000		
Alt 2 – Pump Station	\$4,401,000	\$5,503,000		

KLH
7.4.2.4 Recommended Alternative

Detailed evaluation of the proposed alternatives led to the recommendation of Alternative 2 for Borough's LTCP upgrades. The total estimated project cost is \$5,503,000. This alternative is recommended for the following reasons:

- Alternative 1 project cost is \$3,371,000 more than the recommended Alternative 2.
- Alternative 2 eliminates operation and maintenance requirements of a WWTP.

Alternative 2 is recommended however given the "High Burden" classification associated with this work, completion of the proposed upgrades on a typical project timeline may not be feasible. Project financing will drive the schedule for implementing Alternative 2 upgrades.

8.0 PROJECT PLANNING

The following LTCP schedule is proposed.

LTCP Schedule Table 8.1

Milestone	Date				
Submit draft LTCP	September 1, 2014				
Submit final LTCP with MACM ACT 537	November 1, 2015				
DEP approval of LTCP and ACT 537	January 1, 2016				
Obtain funding for design related services	January 1, 2017				
Begin design of upgrades	January 1, 2017				
Apply for MACM WWTP re-rate	July 1, 2017				
Apply for Part II Permit for pump station	July 1, 2018				
Receive Part II Permit for pump station	January 1, 2019				
Obtain funding for construction	January 1, 2021				
Begin construction for CSS upgrades	March 1, 2021				
Complete construction	March 1, 2023				
Submit post construction compliance monitoring plan	September 1, 2023				

*DEP LTCP approval and Part II Permit dates are beyond the control of the Borough and KLH, therefore schedule dates will be adjusted based on actual DEP milestone completion dates.

9.0 SUMMARY AND CONCLUSIONS

In order to address the "presumption" approach percent capture criteria the following upgrades are recommended:

• Construct Alternative 2 – A new pump station and force main to the City of McKeesport Municipal Authority WWTP.

No CSS upgrades are required to convey the 10-year, 24-hour design storm flow while maintaining greater than 85% capture during a typical year.

The work associated with Alternative 2 has an estimated total project cost of \$5,503,000.

APPENDIX A

System Map CSO Location Map Tributary Area Map

•

ť.

 \bigcirc

 $\left(\cdot \right)$

{

APPENDIX B

DRAVOSBURG SURVEY FIELD BOOK

(

					185-18				(13)	
			et Linger Nacionalis						-	
	8				3e)					
$a_F \cong$	- a vers	harft.	4 - Point A	Port	(and the second	in Con			
		(2 4 57					
3.1		Var as v	Levis A	1.2						
1 I.		$\gamma' \mu r$	1 1	9 - 1. A. A.	· · · ·	.5	$\langle A A \rangle dM$	(7-0.5)		
97 D		· ·	(ist)	ώ. ····	1.1	<i>\$</i> ,	2	(FAG)		- 杨子子子
	12	17	pro the		27	· ·	(at	151		
*),,/			,) ¢		· · · · · ·	2	11	(/ / 3)		
1			$a^{-k} = T$		1 ×	,	29	1-1-		
3.9			$\eta \approx 3.5$, ÷ *	ča.		("testing")		
9		2	$\sim 1 M$				0.1	11 1		
			<u>e</u> 494		-2		11.4	937 M		A State of the
5 <u>7</u>	53	5	Edd &				9. 1	Transformer and the second sec		
$\dot{z}_{ij} \sim$		¥)	17 8 8	·*	÷.		2	5-41		
2.52	8	•	_ (Fret h	(e)	ŝ		Julc .	lean de la service e	• ">= "*	· 《· 科林》 《· 科·
			$\left(\left(\left$							the second second
2.8%			*** (* * *	9	(n';- i	$bac_{1,2}^{-1}$				
e 4			- 1911 (N.							
		*			154		97 V T	2.2		
	27				100	- A.:). <u>*</u>	Cart I. MAR - AP	985 	1
					N	1. 16 18	3.5-	1.1.1	a a A	
	E :		96 C.			- 4 49 E. (1997 -)	1.1.1.1	$M = \left(\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{$	54 N D	
		20								di nan sa sa
									1	
-	-	Charles and States of States			The second			State of the state of the state	The second s	(14) 是一部
e de region	and the second	CONSULTANT OF						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20. 3	

(16) 3 M Bryop 18 111-11-14-14-14 N. / -11.70 -Francisco - A. C. 211 1.15% 5 M. FAST 1- della 1)-= IN FROM ". 13:5-401 - 51 3 307 mg 2. 14. 1ª and a a part day. 3,63 ા માંગુ તે જે A PARTA PARTA IN FROM HAL 76 AH $P_{\rm c}^{\pm}$ \$ 311 g.t.t. - BRATE 14 + 7.7" 200 29 PM 10-Z-Contra de la contra de la contr 5.40 IN FROM MIDS 1. 1. NOT - SAME A AN APPORT MELLER S IN From Mary . 구 18. 10 p Say 5.84 147 # 24 1 . 12:0 all partial to a second W L' & Paker - 8.44 2017 - 56 811 4 - 8 - 6 12 over the phane of the over 1.... rl -J. · . 10 M Fren P 2 272 Joy 11.2 13 paul in 18 ver From St. 7 2 S september 7 9 14 1 847 507 00 per-855 4 NOF 10.35 2.5 1 the way

10. 10. 10. 10.

THE REAL PROPERTY OF (11-2 -13) How and the second of the seco (18) (22,82) $\frac{\partial^2 \nabla \mathcal{D}^2 \xi}{\int d^2 r^2 e^{-i k T} \nabla \mathcal{D}_1} = 0$ 229 TWC - O WET WAR 221 SANMEL. $-L_I^2 \phi$ 2 SAPMHI. ON FROMP 23.1 SANMH. 23.2-2 TWE @ PIT (DET PA.) (en to the later 15,5% Lat. TARAPHE -Ni Hon . Mitton . 1. . . . 71 CHRASAL JAN $\{x_i, x_i\} \in \mathcal{M} \in \mathcal{F} \setminus \{x_i\}$ 5A11 pry 14 35 % DE INST OF #227 Po 4 ----

APPENDIX C

DRNACH METER SITE INSPECTION FORMS

t Namo Dravosburg Flow Manholo identification M. 6.A Date corption Street 378 Clairon Dravosburg Road Date Date And Cover Diamster (m.); 29.5 Date Date Date Solid Pick holes: Diamster (m.); 29.5 Date Date Date Mon Observed Describe: Diamster (m.); 29.5 Date D	Project Name Dravosburg Flow Manhole Identification like Description Street Street laws to road in front of Dravosburg Plant. 378 Clairton Dravosburg rame And Cover Diameter (in.): Image: Clairton Dravosburg rick: Precast: X Other: Image: Clairton Dravosburg rick: Precast: X Other: Image: Clairton Dravosburg size: Precast: X Other: Image: Clairton Dravosburg size: Pipe Material: Notes: Image: Clairton Dravosburg ach Image: Clairton Dravosburg Image: Clairton Dravosburg Image: Clairton Dravosburg size: Pipe Material: Notes: Image: Clairton Dravosburg </th <th>MANHOLE INSPECTION FORM</th>	MANHOLE INSPECTION FORM
And Cover Solid Solid Pick holes: Xo Date And Cover Solid Pick holes: Material: Xon Observed Describe: Solid Precast: Xon Observed Describe: Solid Precast: Xon Observed Describe: Solid Precast: Xon Observed Describe: Solid: Notes:	Iteration Maintoio Identification ite Description Street 378 Clairton Dravosburg Plant. 378 Clairton Dravosburg arno And Cover Diameter (in.): ver: Solid Pick holes: No Grade: X Below: Above: DS Rim to Invert (in.): Grade: X Below: Above: DS Rim to Invert (in.): Ck: Precast: X Other: Ladder Present: Iterior Ck: Precast: X Other: Iterior Describe: Ladder Present: Interview (in.): Size: Pipe Material: Notes: Notes: ice: Pipe Material: Notes: Interview (in.): exch	Surveyor's Name
Street Street Date 28 Clariton Dravesburg Road 38 Clariton Dravesburg Road Audust 20, 2013 And Cover	Elescription Street Art to road in front of Dravosburg Plant. 378 Clairton Dravosburg arme And Cover Diameter (in.): rer: Solid Pick holes: Srade: X Below: Above: Srade: X Below: Above: DS Rim to Invert (in): erior	n M-6A Alexander Matscherz
3 ² Clairion Dravosburg Road Ard Cover Solid Pick holes: Mo Solid Pick holes: Mo Precast: X Other: Ion Observed Describe: Cover Cover Solid Pick holes: Yes an in front of Diravosburg Road Safe: Yes an in form of Diravosburg Road Safe: Yes an in the information of the infore	arree And Cover 378 Clairton Dravosburg arree And Cover Diameter (in.): grade: X Below: No Grade: X Below: Above: Diameter (in.): Grade: X Below: Above: DS Rim to Invert (in.): erior Ck: Precast: X Other: Ladder Present: iltration Observed Describe: Describe: Image: Chair Comparison of the	Date
Ad Cover	me And Cover er: Solid Pick holes: No irade: X Below: Above: DS Rim to invert (in.): irade: X Below: Above: DS Rim to invert (in.): irade: X Other: Ladder Present: Itadder Present: iration Observed Describe: Itadder Present: Itadder Present: istes Pipe Material: Notes: Itadder Present: iste: Pipe Material: Notes: </td <td>Road August 29, 2013</td>	Road August 29, 2013
And Cover	me And Cover er: Solid Pick holes: No irade: X Below: Above: DS Rim to Invert (in.): irade: X Below: Above: DS Rim to Invert (in.): prior	
Ad Cover Solid Pick holes: Mo Diameter (in.): 29.5 e: X Below: Above: D'S Rim to Invert (in): 168 Precast: X Other: Ladder Present: Yas Sofe: Yas Iden Observed Describe:	me And Cover er: Solid Pick holes: No irade: X Below: Above: DS Rim to Invert (in): irade: X Below: Above: DS Rim to Invert (in): irade: X Precast: X Other: Ladder Present: iration Observed Describe: Ladder Present: Itadder Present: iration Observed Describe: Itadder Present: Itadder Present: ifets Size: Pipe Material: Notes: Itadder Present: istre: Pipe Material: Notes: Itadder Present: Itadder Pre	Site Photo
Ards Cover Notes: Diameter (in.): 29.5 Solid Pick holes: DS Rim to Invert (in.): 168 Precast: X Other: DS Rim to Invert (in.): 168 Precast: X Other: Ladder Present: Yas Safe: Yas Mon Observed Describe:	Ind And Cover mr: Solid Pick holes: Notes: Image: X Below: Above: DS Rim to Invert (In): Image: X Precast: X Other: Ladder Present: Ladder Present: Image: Precast: Y Other: Ladder Present: Ital nch och nch och nch nch nch nch nch nch nch nch nch nch<	A.45
image: presenter (in.): 22.5 e: X Below: Above: DS Rim to Invert (in): 166 r	Diameter (in.): ade: X Below: Above: DS Rim to Invert (in): ior : Precast: X Other: Ladder Present: ration Observed Describe: ets Size: Pipe Material: Notes: 12 ach ach ach ach information Accuracy: 20 feet Elevation:	HET.
e: X Below: Above: DS Rim to invert (in): 168 Precast: X Other: Ladder Present: YES Safe: YEI Iton Observed Describe: Iton observed Describe: Iton observed Iton observed<	ade: X Below: Above: DS Rim to Invert (In): ior ior ior iaration Observed Describe: Ists Size: Pipe Material: Notes: 12 ench VCP Metering point ench ench ench ench ench inch	29.5
Proclast: X Other: Ladder Present: Ygs Sefe: Ygs Mon Observed Describe:	Ibr Iadder Present: ration Observed Describe: ration Observed Describe: size: Pipe Material: Notes: 12 non VCP mon	168
Precast: X Other: Ladder Present: Ygs Safe: Ygs tion Observed Describe:	Precast: X Other: Ladder Present: ration Observed Describe:	
Ucn Observed Describe:	ration Observed Describe: Describe: Size: Pipe Matorial: Notes: 12 with VCP Metering point mith	Yes Safe: Yes
Pipe Material: Notes: 12 ndh VCP Metering point Interior Photo ndh Interior Photo Interior Photo Interior Photo ndh VCP Metering point Interior Photo ndh Interior Photo Interior Photo Interior Photo ndh VCP Interior Photo Interior Photo ndh VCP Interior Photo Interior Photo ndh VCP Interior Photo Interior Photo 12 ndh VCP Interior Photo Interior Photo ordh Interior Photo Interior Photo Interior Photo Interior Photo ndh VCP Interior Photo Interior Photo Interior Photo Interior Photo ndh VCP <td>ation Observed Describe: Size: Pipe Material: Notes: 12 inch VCP inch </td> <td></td>	ation Observed Describe: Size: Pipe Material: Notes: 12 inch VCP inch	
2 Pipe Material: Notes: Interior Photo ach	Pipe Material: Notes: 12 with VCP with Metering point with	
Ze: Pipe Material: Notes: Image: Constraint of the state of	Size: Pipe Material: Notes: 12 with VCP Metering point with	
Set Pipe Material: Notes: 12 ech VCP ech ech ech ech ech	Size: Pipe Material: Notes: 12 och VCP Metering point inch	
Iz Pipe Material: Notes: ach VCP Metering point ach ach	Size: Pipe Material: Notes: 12 with VCP Metering point inch	
Ize Pipe Material: Notes: Interior Photo ach VCP Metering point Interior Photo ach Interior Photo Interior Photo ach	Size: Pipe Material: Notes: 12 inch VCP Metering point inch	
12 ach VCP Metering point Image: Construction of the second of th	12 vich VCP Metering point inch	Interior Photo
acch	inch inch inch inch inch inch inch inch inch inch Size: Pipe Material: Notes: 12 inch VCP inch inch inch inch inch VCP inch inch	
arch arch arch arch arch arch arch arch arch re: Pipe Material: Notes: 12 arch vCP arch arch VCP arch Cormation Accuracy: 20 feet Elevation: 737 feet Latitude: 40.349284 Longitude: 79.886014	inch inch inch inch inch inch Size: Pipe Material: Notes: 12 inch VCP inch inch	
andh	mich Image: Size: Pipe Material: Notes: 12 mich VCP Image: Size: information Image: Size: Pipe Material: Notes: Accuracy: 20 feet Elevation: 737 feet Laterial:	
	sinch ts Size: Pipe Material: Notes: 12 mch VCP mch nformation Accuracy: 20 feet Elevation: 737 feet La	
Ze: Pipe Material: Notes: 12 inch VCP inch VCP inch Image: Commation Accuracy: 20 feet Elevation: 737 feet Latitude: 40.349284 Longitude: 79.886014	ts Size: Pipe Material: Notes: 12 moh VCP mod	
ze: Pipe Material: Notes: 12 nch VCP nch VCP nch Image: Comparison of the state o	Size: Pipe Material: Notes: 12 mch VCP	
12 mch VCP mode	12 mch VCP mch Image: Constraint of the second sec	
mod Image: Commation and the second seco	nformation Accuracy: 20 feet Elevation: 737 feet La	
formation Accuracy: 20 feet Elevation: 737 feet Latitude: 40.349284 Longitude: 79.886014	nformation Accuracy: 20 feet Elevation: 737 feet La	
Accuracy: 20 feet Elevation: 737 feet Latitude: 40.349284 Longitude: 79.886014	Accuracy: 20 feet Elevation: 737 feet La	
Longitude: 79.886014	5	itude: 40.340284
		Longitude: 79.886014

roject N	lame	Carl Carl	avosburg Fle	ow		Manhole	Identificat	lon			 Surveyor's Name				
Site Description						City of			M-IA		Alexander Matscherz				
gravel r	pad next to	Dravosburg	Plant.			McClure S	treat	-			 Date				
J		. Diarossarg i	i iditi.			Nicolure 3	(redt				August 29, 2013				
												Site Photo	٦.		
rame A	nd Cover										and the second				
over:	Solid	Р	ick holes:	No		Diameter (in.):	28.75	1						
t Grade:	x	Below:		Above:		DE DI A	Investor A.					I A MILLAN			
		Jecieni		Above,		DS Rim to	invert (in):	246			 and States	The second second second second	Y		
terior		la										and the second se			
ick:	_	Precast:	X	Other:		Ladder Pre	sent:	Yes	Safe:	Yes	and the second				
filtratio	n Obser	ad la	867.0 4 200								and the second				
millario	II Observ	eu D	escribe:						-	1	 				
								-							
Inlets												Interior Photo			
Size		<u> </u> '	Pipe Material:	No	tes:				-		+	THE REAL PROPERTY AND INCOMENTAL OPERATION OF THE REAL PROPERTY AND INCOMENTAL OPERATION.	٦		
12	incri		PVC												
12	inch	<u> </u>	PVC		-										
	inch												1		
_	mich											1151:			
late	1										 A STATE OF LE				
Size		T 7	Pine Material:	Na											
12	000		PVC	Me	lering point						 and the state	Carrier Martin			
	#1C21				anny point							a state of the second s			
												and the second states and	1		
-S Infor	mation	20.4						1.5							
	Accuracy:	20 100	et	Ele	vation: 74	14 feet	- 1	atitude:		40.349557	Longitude:	79.885361			
_							-				 				
tes															
													_		

Project	Name	100	Dravosburg Fl	low		1	Manhola Identii	instian				Surveyor's Name			
Site Desc	Site Dependenting						mannote identif	Ication	M-3			Alexander Matscherz			
ane Description						1	Street					Date			
in graaa n		avosburg	riant.				378 Clairton Dravo	sburg Road				August 29, 2013			
Frame A	nd Cover		1										Site Photo		
Cover	Solid	N	Pick holes			i.						and the state of the state			
	Juona		Fick notes:	NO	-		Diameter (In.):	28.7					Contraction of the second second		
At Grade:	X	Below:		Above:			DS Rim to Invert (in	n): 220				State of the local division of the	and the second sec		
Interior												Section of the sectio	- Participation of the second		
Brick:		Precast:	x	Other:			I adder Present:		1 Cath			der all			
							and the sent.	149	Sare:	Tes					
Infiltratio	on Obser	ved	Describe:									and the second			
													and the second		
			_												
	-														
Inlets															
Size	¢		Pipe Material	:	Notes:								Interior Photo		
13	2 4000		PVC		Metering pe	oint						8			
13	2 and		PVC									4			
	nch					_							ALL ALL		
	-thete			_											
	nch							-							
Dutlets	1											11	5 B 4		
Size	8		Pipe Material:		Notes:							1			
18	3 inch		PVC												
	inch.														
GPS Info	rmation														
	Accuracy	20	feet	1	Elevation:	741	feet	Latitude		40.349416	1	Longitudes	70 0007770		
												congitude:	13'000113		
Inter															
lotes															

Project N	lame	Contraction of	Dravoshuro Fi	ow		٦	Manhola	International distance		-			Surveyor's Nam	9		
Site Dec							mannole	Identificat	lion	M-4A		Alexander Matscherz				
Site Description							Street						Date			
In back ya	rd of 181 D	uquesne A	venue				181 Duque	sпе Avenue					August 29, 2013	á		
						1							THE REAL AREA	Site P	noto	- 24 12 200113
						1									(1) 建筑管理	Sec.
Frame Ar	nd Cover	h 10											12 3	ALL THE THE		1
Cover:	Solid		Pick holes:	No	_		Diameter (in.):	30					The seal		a start
At Grade:		Below:		Above:	x	٦	DS Rim to	Invert (in):	120					and the factor	C. Care	
and one loss	1					-			120				A CONTRACTOR	and the second		1 I
Relation		D		1.20		-	-						1. 1. 1.	123	ALL TAR	and the second sec
BLICK;		Precast:	X	Other:	_	1	Ladder Pre	sent:	Yes	Safe:	Yes			See 144	A In	5
Infiltratio	n Observ	red	Describer										Nymon		and and a	1
	and order of the		Describe:											- SAME	A STATE AND A STATE A	And and a
			1										Market States		C. C. C. L. C. L. C. L.	CALLER
											-					
Intele	1															
Size		1	Pine Material		Natas					_				Interior	Photo	
8	men		VCP		Motoring	noint				_			1			
	WICH				metering	point							1 - C			10
	inch												A. T. BAR	As the start	The second	and the second s
	mah														SCHER	The second
	man													Carter .	A MALE	
Outlets	1														S. 16 1	-
Size:			Pipe Material:		Notes:									Serve its		
8	inch		VCP		illotop.										THE REPAIR	A Star
	anchi -												10.00	1 all the	SANAY PER	154
00 1-6														To Alana Provide Str.		
SPS Intor	mation	20	6-14													
	Accuracy.	20	leet		Elevation	99	0 feet	L	atitude:		40.35562		Longitude:	79.8849	06	
lotes																

Site Description Street Date Middle of road in front of Dravosburg United Methodist. 110 Maple Avenue Date	
Street Date Middle of road in front of Dravosburg United Methodist. 110 Maple Avenue Date	
Middle of road in front of Dravosburg United Methodist. 110 Maple Avenue August 29, 2013	
Site	Photo
Frame And Cover	1 S 1
Cover: Solid Pick holes: No Diameter (in.): 26.5	
At Grade: X Below: Above: DS Rim to Invert (in): 136	
Interior	
Brick: X Precast: Other: Ladder Present: Yes Safe: Yes	
Infiltration Observed Describe:	
baschot.	the second second
Inlets	rior Photo
Size: Pipe Material: Notes:	
15 inch VCP Metering point	
inch Inch	The second second
ingli	ALL THE
eich de la companya d	AT LASS
Dutlets	
Size: Pipe Material: Notes:	
21 Inch VCP	
SPS Information	
Accuracy: 20 feet Elevation: 844 feet Latitude: 40.348521 Longitude: 79.88	89621
NOTES	

APPENDIX D

DRNACH SCATTERGRAPHS

 \mathbb{C}

(

ť